Metamath Proof Explorer


Theorem ppicl

Description: Real closure of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppicl ( 𝐴 ∈ ℝ → ( π𝐴 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 ppif π : ℝ ⟶ ℕ0
2 1 ffvelrni ( 𝐴 ∈ ℝ → ( π𝐴 ) ∈ ℕ0 )