Step |
Hyp |
Ref |
Expression |
1 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) ) |
3 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
4 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
5 |
|
ppival2 |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) ) |
7 |
2 3 6
|
3eqtr4rd |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( π ‘ 𝐴 ) ) |