Metamath Proof Explorer


Theorem ppifl

Description: The prime-counting function ppi does not change off the integers. (Contributed by Mario Carneiro, 18-Sep-2014)

Ref Expression
Assertion ppifl ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( π𝐴 ) )

Proof

Step Hyp Ref Expression
1 ppisval ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) )
2 1 fveq2d ( 𝐴 ∈ ℝ → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) )
3 ppival ( 𝐴 ∈ ℝ → ( π𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) )
4 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
5 ppival2 ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) )
6 4 5 syl ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( ♯ ‘ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) )
7 2 3 6 3eqtr4rd ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( π𝐴 ) )