Metamath Proof Explorer


Theorem ppinncl

Description: Closure of the prime-counting function ppi in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppinncl ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 ppicl ( 𝐴 ∈ ℝ → ( π𝐴 ) ∈ ℕ0 )
2 1 adantr ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π𝐴 ) ∈ ℕ0 )
3 2 nn0zd ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π𝐴 ) ∈ ℤ )
4 ppi2 ( π ‘ 2 ) = 1
5 2re 2 ∈ ℝ
6 ppiwordi ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 2 ) ≤ ( π𝐴 ) )
7 5 6 mp3an1 ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 2 ) ≤ ( π𝐴 ) )
8 4 7 eqbrtrrid ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → 1 ≤ ( π𝐴 ) )
9 elnnz1 ( ( π𝐴 ) ∈ ℕ ↔ ( ( π𝐴 ) ∈ ℤ ∧ 1 ≤ ( π𝐴 ) ) )
10 3 8 9 sylanbrc ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π𝐴 ) ∈ ℕ )