Metamath Proof Explorer


Theorem ppip1le

Description: The prime-counting function ppi cannot locally increase faster than the identity function. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppip1le ( 𝐴 ∈ ℝ → ( π ‘ ( 𝐴 + 1 ) ) ≤ ( ( π𝐴 ) + 1 ) )

Proof

Step Hyp Ref Expression
1 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
2 zre ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
3 peano2re ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ )
4 2 3 syl ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ )
5 4 adantr ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ )
6 ppicl ( ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℕ0 )
7 5 6 syl ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℕ0 )
8 7 nn0red ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ∈ ℝ )
9 ppiprm ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
10 8 9 eqled ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
11 ppinprm ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( π ‘ ( ⌊ ‘ 𝐴 ) ) )
12 ppicl ( ( ⌊ ‘ 𝐴 ) ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ0 )
13 2 12 syl ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ0 )
14 13 nn0red ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ )
15 14 adantr ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ )
16 15 lep1d ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
17 11 16 eqbrtrd ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ¬ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℙ ) → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
18 10 17 pm2.61dan ( ( ⌊ ‘ 𝐴 ) ∈ ℤ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
19 1 18 syl ( 𝐴 ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ≤ ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) )
20 1z 1 ∈ ℤ
21 fladdz ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℤ ) → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) )
22 20 21 mpan2 ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + 1 ) ) = ( ( ⌊ ‘ 𝐴 ) + 1 ) )
23 22 fveq2d ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) )
24 peano2re ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ )
25 ppifl ( ( 𝐴 + 1 ) ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( 𝐴 + 1 ) ) )
26 24 25 syl ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ ( 𝐴 + 1 ) ) ) = ( π ‘ ( 𝐴 + 1 ) ) )
27 23 26 eqtr3d ( 𝐴 ∈ ℝ → ( π ‘ ( ( ⌊ ‘ 𝐴 ) + 1 ) ) = ( π ‘ ( 𝐴 + 1 ) ) )
28 ppifl ( 𝐴 ∈ ℝ → ( π ‘ ( ⌊ ‘ 𝐴 ) ) = ( π𝐴 ) )
29 28 oveq1d ( 𝐴 ∈ ℝ → ( ( π ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) = ( ( π𝐴 ) + 1 ) )
30 19 27 29 3brtr3d ( 𝐴 ∈ ℝ → ( π ‘ ( 𝐴 + 1 ) ) ≤ ( ( π𝐴 ) + 1 ) )