Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
2 |
1
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ℙ ) |
3 |
|
prmuz2 |
⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) |
5 |
|
prmz |
⊢ ( 𝑥 ∈ ℙ → 𝑥 ∈ ℤ ) |
6 |
2 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ℤ ) |
7 |
|
flcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
8 |
7
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
9 |
1
|
elin1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( 0 [,] 𝐴 ) ) |
10 |
|
0re |
⊢ 0 ∈ ℝ |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ ) |
12 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑥 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
13 |
10 11 12
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) ) |
14 |
9 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ∧ 𝑥 ≤ 𝐴 ) ) |
15 |
14
|
simp3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ≤ 𝐴 ) |
16 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ ) → ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
17 |
6 16
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
18 |
15 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) |
19 |
|
eluz2 |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ↔ ( 𝑥 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ 𝑥 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
20 |
6 8 18 19
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) |
21 |
|
elfzuzb |
⊢ ( 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 𝑥 ) ) ) |
22 |
4 20 21
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
23 |
22 2
|
elind |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑥 ∈ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
24 |
23
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑥 ∈ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) ) |
25 |
24
|
ssrdv |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
26 |
|
2z |
⊢ 2 ∈ ℤ |
27 |
|
fzval2 |
⊢ ( ( 2 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ) |
28 |
26 7 27
|
sylancr |
⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ) |
29 |
|
inss1 |
⊢ ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ⊆ ( 2 [,] ( ⌊ ‘ 𝐴 ) ) |
30 |
10
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
31 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
32 |
|
0le2 |
⊢ 0 ≤ 2 |
33 |
32
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ 2 ) |
34 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
35 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ 2 ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) ) → ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
36 |
30 31 33 34 35
|
syl22anc |
⊢ ( 𝐴 ∈ ℝ → ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
37 |
29 36
|
sstrid |
⊢ ( 𝐴 ∈ ℝ → ( ( 2 [,] ( ⌊ ‘ 𝐴 ) ) ∩ ℤ ) ⊆ ( 0 [,] 𝐴 ) ) |
38 |
28 37
|
eqsstrd |
⊢ ( 𝐴 ∈ ℝ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
39 |
38
|
ssrind |
⊢ ( 𝐴 ∈ ℝ → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
40 |
25 39
|
eqssd |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |