| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ppisval | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 2 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 2 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 3 |  | fzss1 | ⊢ ( 2  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 2 ... ( ⌊ ‘ 𝐴 ) )  ⊆  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 2 ... ( ⌊ ‘ 𝐴 ) )  ⊆  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 5 | 4 | ssrind | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 2 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ )  ⊆  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 7 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ )  ↔  ( 𝑥  ∈  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑥  ∈  ℙ ) ) | 
						
							| 8 | 6 7 | sylib | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  ( 𝑥  ∈  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∧  𝑥  ∈  ℙ ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ℙ ) | 
						
							| 10 |  | prmuz2 | ⊢ ( 𝑥  ∈  ℙ  →  𝑥  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 12 | 8 | simpld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 13 |  | elfzuz3 | ⊢ ( 𝑥  ∈  ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  →  ( ⌊ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  ( ⌊ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) | 
						
							| 15 |  | elfzuzb | ⊢ ( 𝑥  ∈  ( 2 ... ( ⌊ ‘ 𝐴 ) )  ↔  ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  ( ⌊ ‘ 𝐴 )  ∈  ( ℤ≥ ‘ 𝑥 ) ) ) | 
						
							| 16 | 11 14 15 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) | 
						
							| 17 | 16 9 | elind | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑥  ∈  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) )  →  𝑥  ∈  ( ( 2 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 18 | 5 17 | eqelssd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 2 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ )  =  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) | 
						
							| 19 | 2 18 | eqtrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  2  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( ( 0 [,] 𝐴 )  ∩  ℙ )  =  ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) )  ∩  ℙ ) ) |