Metamath Proof Explorer


Theorem ppival

Description: Value of the prime-counting function pi. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppival ( 𝐴 ∈ ℝ → ( π𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) )

Proof

Step Hyp Ref Expression
1 oveq2 ( 𝑥 = 𝐴 → ( 0 [,] 𝑥 ) = ( 0 [,] 𝐴 ) )
2 1 ineq1d ( 𝑥 = 𝐴 → ( ( 0 [,] 𝑥 ) ∩ ℙ ) = ( ( 0 [,] 𝐴 ) ∩ ℙ ) )
3 2 fveq2d ( 𝑥 = 𝐴 → ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) )
4 df-ppi π = ( 𝑥 ∈ ℝ ↦ ( ♯ ‘ ( ( 0 [,] 𝑥 ) ∩ ℙ ) ) )
5 fvex ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∈ V
6 3 4 5 fvmpt ( 𝐴 ∈ ℝ → ( π𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) )