Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
2 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
4 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
5 |
1 4
|
syl |
⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
6 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
7 |
6
|
oveq2d |
⊢ ( 𝐴 ∈ ℤ → ( 2 ... ( ⌊ ‘ 𝐴 ) ) = ( 2 ... 𝐴 ) ) |
8 |
7
|
ineq1d |
⊢ ( 𝐴 ∈ ℤ → ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
9 |
5 8
|
eqtrd |
⊢ ( 𝐴 ∈ ℤ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... 𝐴 ) ∩ ℙ ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝐴 ∈ ℤ → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |
11 |
3 10
|
eqtrd |
⊢ ( 𝐴 ∈ ℤ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 2 ... 𝐴 ) ∩ ℙ ) ) ) |