Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℝ ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐴 ∈ ℝ ) |
3 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
5 |
|
ppisval2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
6 |
1 5
|
sylan |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
7 |
|
flid |
⊢ ( 𝐴 ∈ ℤ → ( ⌊ ‘ 𝐴 ) = 𝐴 ) |
8 |
7
|
oveq2d |
⊢ ( 𝐴 ∈ ℤ → ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) = ( 𝑀 ... 𝐴 ) ) |
9 |
8
|
ineq1d |
⊢ ( 𝐴 ∈ ℤ → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑀 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |
13 |
4 12
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 2 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 𝑀 ... 𝐴 ) ∩ ℙ ) ) ) |