Step |
Hyp |
Ref |
Expression |
1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
2 |
|
ppifi |
⊢ ( 𝐵 ∈ ℝ → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) |
4 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ ℝ ) |
5 |
|
0le0 |
⊢ 0 ≤ 0 |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 0 ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
8 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) |
9 |
4 1 6 7 8
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) |
10 |
9
|
ssrind |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) |
11 |
|
ssdomg |
⊢ ( ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin → ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐵 ) ∩ ℙ ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ≼ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
12 |
3 10 11
|
sylc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ≼ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) |
13 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
15 |
|
hashdom |
⊢ ( ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ∧ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ↔ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ≼ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
16 |
14 3 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ↔ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ≼ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
17 |
12 16
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
18 |
|
ppival |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( π ‘ 𝐴 ) = ( ♯ ‘ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ) |
20 |
|
ppival |
⊢ ( 𝐵 ∈ ℝ → ( π ‘ 𝐵 ) = ( ♯ ‘ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
21 |
1 20
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( π ‘ 𝐵 ) = ( ♯ ‘ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) ) |
22 |
17 19 21
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( π ‘ 𝐴 ) ≤ ( π ‘ 𝐵 ) ) |