Step |
Hyp |
Ref |
Expression |
1 |
|
ppttop |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |
2 |
|
topontop |
⊢ ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ) |
4 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ { 𝑥 , 𝑃 } ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( 𝑦 = ∅ ↔ { 𝑥 , 𝑃 } = ∅ ) ) |
6 |
4 5
|
orbi12d |
⊢ ( 𝑦 = { 𝑥 , 𝑃 } → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ { 𝑥 , 𝑃 } ∨ { 𝑥 , 𝑃 } = ∅ ) ) ) |
7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
8 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
9 |
7 8
|
prssd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ⊆ 𝐴 ) |
10 |
|
prex |
⊢ { 𝑥 , 𝑃 } ∈ V |
11 |
10
|
elpw |
⊢ ( { 𝑥 , 𝑃 } ∈ 𝒫 𝐴 ↔ { 𝑥 , 𝑃 } ⊆ 𝐴 ) |
12 |
9 11
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ∈ 𝒫 𝐴 ) |
13 |
|
prid2g |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ { 𝑥 , 𝑃 } ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑃 ∈ { 𝑥 , 𝑃 } ) |
15 |
14
|
orcd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑃 ∈ { 𝑥 , 𝑃 } ∨ { 𝑥 , 𝑃 } = ∅ ) ) |
16 |
6 12 15
|
elrabd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 , 𝑃 } ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
17 |
16
|
fmpttd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) : 𝐴 ⟶ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
18 |
17
|
frnd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ⊆ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
19 |
|
eleq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧 ) ) |
20 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 = ∅ ↔ 𝑧 = ∅ ) ) |
21 |
19 20
|
orbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
22 |
21
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
23 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴 ) |
24 |
23
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → 𝑧 ⊆ 𝐴 ) |
25 |
24
|
sselda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝐴 ) |
26 |
|
prid1g |
⊢ ( 𝑤 ∈ 𝑧 → 𝑤 ∈ { 𝑤 , 𝑃 } ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ { 𝑤 , 𝑃 } ) |
28 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑤 ∈ 𝑧 ) |
29 |
|
n0i |
⊢ ( 𝑤 ∈ 𝑧 → ¬ 𝑧 = ∅ ) |
30 |
29
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ¬ 𝑧 = ∅ ) |
31 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) |
32 |
31
|
ord |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ( ¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅ ) ) |
33 |
30 32
|
mt3d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → 𝑃 ∈ 𝑧 ) |
34 |
28 33
|
prssd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → { 𝑤 , 𝑃 } ⊆ 𝑧 ) |
35 |
|
preq1 |
⊢ ( 𝑥 = 𝑤 → { 𝑥 , 𝑃 } = { 𝑤 , 𝑃 } ) |
36 |
35
|
eleq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑤 ∈ { 𝑥 , 𝑃 } ↔ 𝑤 ∈ { 𝑤 , 𝑃 } ) ) |
37 |
35
|
sseq1d |
⊢ ( 𝑥 = 𝑤 → ( { 𝑥 , 𝑃 } ⊆ 𝑧 ↔ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) |
38 |
36 37
|
anbi12d |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ↔ ( 𝑤 ∈ { 𝑤 , 𝑃 } ∧ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) ) |
39 |
38
|
rspcev |
⊢ ( ( 𝑤 ∈ 𝐴 ∧ ( 𝑤 ∈ { 𝑤 , 𝑃 } ∧ { 𝑤 , 𝑃 } ⊆ 𝑧 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
40 |
25 27 34 39
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
41 |
10
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 { 𝑥 , 𝑃 } ∈ V |
42 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) |
43 |
|
eleq2 |
⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ { 𝑥 , 𝑃 } ) ) |
44 |
|
sseq1 |
⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( 𝑣 ⊆ 𝑧 ↔ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
45 |
43 44
|
anbi12d |
⊢ ( 𝑣 = { 𝑥 , 𝑃 } → ( ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) ) |
46 |
42 45
|
rexrnmptw |
⊢ ( ∀ 𝑥 ∈ 𝐴 { 𝑥 , 𝑃 } ∈ V → ( ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) ) |
47 |
41 46
|
ax-mp |
⊢ ( ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑤 ∈ { 𝑥 , 𝑃 } ∧ { 𝑥 , 𝑃 } ⊆ 𝑧 ) ) |
48 |
40 47
|
sylibr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ∧ 𝑤 ∈ 𝑧 ) → ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
49 |
48
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
50 |
49
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) ) |
51 |
22 50
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) ) |
52 |
51
|
ralrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) |
53 |
|
basgen2 |
⊢ ( ( { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∈ Top ∧ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ⊆ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∧ ∀ 𝑧 ∈ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ∀ 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ( 𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧 ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
54 |
3 18 52 53
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) = { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } ) |
55 |
|
eleq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥 ) ) |
56 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ∅ ↔ 𝑥 = ∅ ) ) |
57 |
55 56
|
orbi12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ↔ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) |
58 |
57
|
cbvrabv |
⊢ { 𝑦 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) } = { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } |
59 |
54 58
|
eqtr2di |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } = ( topGen ‘ ran ( 𝑥 ∈ 𝐴 ↦ { 𝑥 , 𝑃 } ) ) ) |