Step |
Hyp |
Ref |
Expression |
1 |
|
ssrab |
⊢ ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) |
2 |
|
eleq2 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦 ) ) |
3 |
|
eqeq1 |
⊢ ( 𝑥 = ∪ 𝑦 → ( 𝑥 = ∅ ↔ ∪ 𝑦 = ∅ ) ) |
4 |
2 3
|
orbi12d |
⊢ ( 𝑥 = ∪ 𝑦 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 = ∅ ) ) ) |
5 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → 𝑦 ⊆ 𝒫 𝐴 ) |
6 |
|
sspwuni |
⊢ ( 𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
7 |
5 6
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ⊆ 𝐴 ) |
8 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
9 |
8
|
elpw |
⊢ ( ∪ 𝑦 ∈ 𝒫 𝐴 ↔ ∪ 𝑦 ⊆ 𝐴 ) |
10 |
7 9
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ∈ 𝒫 𝐴 ) |
11 |
|
neq0 |
⊢ ( ¬ ∪ 𝑦 = ∅ ↔ ∃ 𝑧 𝑧 ∈ ∪ 𝑦 ) |
12 |
|
eluni2 |
⊢ ( 𝑧 ∈ ∪ 𝑦 ↔ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) |
13 |
|
r19.29 |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) → ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) |
14 |
|
n0i |
⊢ ( 𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅ ) |
15 |
14
|
adantl |
⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ¬ 𝑥 = ∅ ) |
16 |
|
simpl |
⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) |
17 |
16
|
ord |
⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → ( ¬ 𝑃 ∈ 𝑥 → 𝑥 = ∅ ) ) |
18 |
15 17
|
mt3d |
⊢ ( ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → 𝑃 ∈ 𝑥 ) |
19 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑥 ∈ 𝑦 ) |
20 |
|
elunii |
⊢ ( ( 𝑃 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) → 𝑃 ∈ ∪ 𝑦 ) |
21 |
18 19 20
|
syl2an2 |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) ) → 𝑃 ∈ ∪ 𝑦 ) |
22 |
21
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝑦 ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ 𝑧 ∈ 𝑥 ) → 𝑃 ∈ ∪ 𝑦 ) |
23 |
13 22
|
syl |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ∧ ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 ) → 𝑃 ∈ ∪ 𝑦 ) |
24 |
23
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦 ) ) |
25 |
24
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ∃ 𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦 ) ) |
26 |
12 25
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( 𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦 ) ) |
27 |
26
|
exlimdv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ∃ 𝑧 𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦 ) ) |
28 |
11 27
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ¬ ∪ 𝑦 = ∅ → 𝑃 ∈ ∪ 𝑦 ) ) |
29 |
28
|
con1d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( ¬ 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 = ∅ ) ) |
30 |
29
|
orrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ( 𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 = ∅ ) ) |
31 |
4 10 30
|
elrabd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ⊆ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ 𝑦 ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ) → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
33 |
1 32
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
34 |
33
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
35 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) |
36 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ∅ ↔ 𝑦 = ∅ ) ) |
37 |
35 36
|
orbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ) |
38 |
37
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ) |
39 |
|
eleq2 |
⊢ ( 𝑥 = 𝑧 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧 ) ) |
40 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ∅ ↔ 𝑧 = ∅ ) ) |
41 |
39 40
|
orbi12d |
⊢ ( 𝑥 = 𝑧 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
42 |
41
|
elrab |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) |
43 |
38 42
|
anbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ↔ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) |
44 |
|
eleq2 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ) ) |
45 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( 𝑥 = ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
46 |
44 45
|
orbi12d |
⊢ ( 𝑥 = ( 𝑦 ∩ 𝑧 ) → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) ) |
47 |
|
inss1 |
⊢ ( 𝑦 ∩ 𝑧 ) ⊆ 𝑦 |
48 |
|
simprll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → 𝑦 ∈ 𝒫 𝐴 ) |
49 |
48
|
elpwid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → 𝑦 ⊆ 𝐴 ) |
50 |
47 49
|
sstrid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
51 |
|
vex |
⊢ 𝑦 ∈ V |
52 |
51
|
inex1 |
⊢ ( 𝑦 ∩ 𝑧 ) ∈ V |
53 |
52
|
elpw |
⊢ ( ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( 𝑦 ∩ 𝑧 ) ⊆ 𝐴 ) |
54 |
50 53
|
sylibr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ 𝒫 𝐴 ) |
55 |
|
ianor |
⊢ ( ¬ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ↔ ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) ) |
56 |
|
elin |
⊢ ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( 𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧 ) ) |
57 |
55 56
|
xchnxbir |
⊢ ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ↔ ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) ) |
58 |
|
simprlr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) |
59 |
58
|
ord |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ 𝑦 → 𝑦 = ∅ ) ) |
60 |
|
simprrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) |
61 |
60
|
ord |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅ ) ) |
62 |
59 61
|
orim12d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ( ¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧 ) → ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) ) |
63 |
57 62
|
syl5bi |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) ) |
64 |
|
inss |
⊢ ( ( 𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅ ) → ( 𝑦 ∩ 𝑧 ) ⊆ ∅ ) |
65 |
|
ss0b |
⊢ ( 𝑦 ⊆ ∅ ↔ 𝑦 = ∅ ) |
66 |
|
ss0b |
⊢ ( 𝑧 ⊆ ∅ ↔ 𝑧 = ∅ ) |
67 |
65 66
|
orbi12i |
⊢ ( ( 𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅ ) ↔ ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) ) |
68 |
|
ss0b |
⊢ ( ( 𝑦 ∩ 𝑧 ) ⊆ ∅ ↔ ( 𝑦 ∩ 𝑧 ) = ∅ ) |
69 |
64 67 68
|
3imtr3i |
⊢ ( ( 𝑦 = ∅ ∨ 𝑧 = ∅ ) → ( 𝑦 ∩ 𝑧 ) = ∅ ) |
70 |
63 69
|
syl6 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( ¬ 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) → ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
71 |
70
|
orrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑃 ∈ ( 𝑦 ∩ 𝑧 ) ∨ ( 𝑦 ∩ 𝑧 ) = ∅ ) ) |
72 |
46 54 71
|
elrabd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) ∧ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
73 |
72
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑦 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑦 ∨ 𝑦 = ∅ ) ) ∧ ( 𝑧 ∈ 𝒫 𝐴 ∧ ( 𝑃 ∈ 𝑧 ∨ 𝑧 = ∅ ) ) ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
74 |
43 73
|
syl5bi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∧ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) → ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
75 |
74
|
ralrimivv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
76 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
77 |
76
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝒫 𝐴 ∈ V ) |
78 |
|
rabexg |
⊢ ( 𝒫 𝐴 ∈ V → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ V ) |
79 |
|
istopg |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ V → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) ) |
80 |
77 78 79
|
3syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ↔ ( ∀ 𝑦 ( 𝑦 ⊆ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → ∪ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ( 𝑦 ∩ 𝑧 ) ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) ) |
81 |
34 75 80
|
mpbir2and |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ) |
82 |
|
eleq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴 ) ) |
83 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ∅ ↔ 𝐴 = ∅ ) ) |
84 |
82 83
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) ↔ ( 𝑃 ∈ 𝐴 ∨ 𝐴 = ∅ ) ) ) |
85 |
|
pwidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴 ) |
86 |
85
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ 𝒫 𝐴 ) |
87 |
|
animorrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∈ 𝐴 ∨ 𝐴 = ∅ ) ) |
88 |
84 86 87
|
elrabd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
89 |
|
elssuni |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
90 |
88 89
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 ⊆ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
91 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 |
92 |
|
sspwuni |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝒫 𝐴 ↔ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
93 |
91 92
|
mpbi |
⊢ ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 |
94 |
93
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ⊆ 𝐴 ) |
95 |
90 94
|
eqssd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) |
96 |
|
istopon |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ↔ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ Top ∧ 𝐴 = ∪ { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ) ) |
97 |
81 95 96
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴 ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝑃 ∈ 𝑥 ∨ 𝑥 = ∅ ) } ∈ ( TopOn ‘ 𝐴 ) ) |