Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ 𝐵 = 𝐵 |
2 |
1
|
biantru |
⊢ ( 𝐴 = 𝐶 ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) |
3 |
2
|
orbi2i |
⊢ ( ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ 𝐴 = 𝐶 ) ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) |
4 |
3
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ 𝐴 = 𝐶 ) ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
5 |
|
neneq |
⊢ ( 𝐴 ≠ 𝐵 → ¬ 𝐴 = 𝐵 ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐴 = 𝐵 ) |
7 |
6
|
intnanrd |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ¬ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ) |
8 |
|
biorf |
⊢ ( ¬ ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) → ( 𝐴 = 𝐶 ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ 𝐴 = 𝐶 ) ) ) |
9 |
7 8
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐶 ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ 𝐴 = 𝐶 ) ) ) |
10 |
|
3simpa |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ) |
11 |
|
3simpc |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ) |
12 |
10 11
|
jca |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ) ) |
14 |
|
preq12bg |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ↔ ( ( 𝐴 = 𝐵 ∧ 𝐵 = 𝐶 ) ∨ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐵 ) ) ) ) |
16 |
4 9 15
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑋 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐶 ↔ { 𝐴 , 𝐵 } = { 𝐵 , 𝐶 } ) ) |