Metamath Proof Explorer


Theorem pr2ne

Description: If an unordered pair has two elements they are different. (Contributed by FL, 14-Feb-2010)

Ref Expression
Assertion pr2ne ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 preq2 ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } )
2 1 eqcoms ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } )
3 enpr1g ( 𝐴𝐶 → { 𝐴 , 𝐴 } ≈ 1o )
4 entr ( ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ∧ { 𝐴 , 𝐴 } ≈ 1o ) → { 𝐴 , 𝐵 } ≈ 1o )
5 1sdom2 1o ≺ 2o
6 sdomnen ( 1o ≺ 2o → ¬ 1o ≈ 2o )
7 5 6 ax-mp ¬ 1o ≈ 2o
8 ensym ( { 𝐴 , 𝐵 } ≈ 1o → 1o ≈ { 𝐴 , 𝐵 } )
9 entr ( ( 1o ≈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ≈ 2o ) → 1o ≈ 2o )
10 9 ex ( 1o ≈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝐵 } ≈ 2o → 1o ≈ 2o ) )
11 8 10 syl ( { 𝐴 , 𝐵 } ≈ 1o → ( { 𝐴 , 𝐵 } ≈ 2o → 1o ≈ 2o ) )
12 7 11 mtoi ( { 𝐴 , 𝐵 } ≈ 1o → ¬ { 𝐴 , 𝐵 } ≈ 2o )
13 12 a1d ( { 𝐴 , 𝐵 } ≈ 1o → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) )
14 4 13 syl ( ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ∧ { 𝐴 , 𝐴 } ≈ 1o ) → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) )
15 14 ex ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } → ( { 𝐴 , 𝐴 } ≈ 1o → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) )
16 prex { 𝐴 , 𝐵 } ∈ V
17 eqeng ( { 𝐴 , 𝐵 } ∈ V → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ) )
18 16 17 ax-mp ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } )
19 15 18 syl11 ( { 𝐴 , 𝐴 } ≈ 1o → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) )
20 19 a1dd ( { 𝐴 , 𝐴 } ≈ 1o → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( 𝐵𝐷 → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) )
21 3 20 syl ( 𝐴𝐶 → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( 𝐵𝐷 → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) )
22 21 com23 ( 𝐴𝐶 → ( 𝐵𝐷 → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) )
23 22 imp ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴𝐶𝐵𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) )
24 23 pm2.43a ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ¬ { 𝐴 , 𝐵 } ≈ 2o ) )
25 2 24 syl5 ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴 = 𝐵 → ¬ { 𝐴 , 𝐵 } ≈ 2o ) )
26 25 necon2ad ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )
27 pr2nelem ( ( 𝐴𝐶𝐵𝐷𝐴𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o )
28 27 3expia ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) )
29 26 28 impbid ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )