Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | pr2ne | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnen2o | ⊢ ¬ { 𝐴 } ≈ 2o | |
2 | dfsn2 | ⊢ { 𝐴 } = { 𝐴 , 𝐴 } | |
3 | preq2 | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } ) | |
4 | 2 3 | eqtr2id | ⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } ) |
5 | 4 | breq1d | ⊢ ( 𝐴 = 𝐵 → ( { 𝐴 , 𝐵 } ≈ 2o ↔ { 𝐴 } ≈ 2o ) ) |
6 | 1 5 | mtbiri | ⊢ ( 𝐴 = 𝐵 → ¬ { 𝐴 , 𝐵 } ≈ 2o ) |
7 | 6 | necon2ai | ⊢ ( { 𝐴 , 𝐵 } ≈ 2o → 𝐴 ≠ 𝐵 ) |
8 | enpr2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) | |
9 | 8 | 3expia | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) ) |
10 | 7 9 | impbid2 | ⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) |