Metamath Proof Explorer


Theorem pr2ne

Description: If an unordered pair has two elements, then they are different. (Contributed by FL, 14-Feb-2010) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion pr2ne ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 snnen2o ¬ { 𝐴 } ≈ 2o
2 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
3 preq2 ( 𝐴 = 𝐵 → { 𝐴 , 𝐴 } = { 𝐴 , 𝐵 } )
4 2 3 eqtr2id ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 } )
5 4 breq1d ( 𝐴 = 𝐵 → ( { 𝐴 , 𝐵 } ≈ 2o ↔ { 𝐴 } ≈ 2o ) )
6 1 5 mtbiri ( 𝐴 = 𝐵 → ¬ { 𝐴 , 𝐵 } ≈ 2o )
7 6 necon2ai ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 )
8 enpr2 ( ( 𝐴𝐶𝐵𝐷𝐴𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o )
9 8 3expia ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) )
10 7 9 impbid2 ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )