Step |
Hyp |
Ref |
Expression |
1 |
|
preq2 |
⊢ ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } ) |
2 |
1
|
eqcoms |
⊢ ( 𝐴 = 𝐵 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } ) |
3 |
|
enpr1g |
⊢ ( 𝐴 ∈ 𝐶 → { 𝐴 , 𝐴 } ≈ 1o ) |
4 |
|
entr |
⊢ ( ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ∧ { 𝐴 , 𝐴 } ≈ 1o ) → { 𝐴 , 𝐵 } ≈ 1o ) |
5 |
|
1sdom2 |
⊢ 1o ≺ 2o |
6 |
|
sdomnen |
⊢ ( 1o ≺ 2o → ¬ 1o ≈ 2o ) |
7 |
5 6
|
ax-mp |
⊢ ¬ 1o ≈ 2o |
8 |
|
ensym |
⊢ ( { 𝐴 , 𝐵 } ≈ 1o → 1o ≈ { 𝐴 , 𝐵 } ) |
9 |
|
entr |
⊢ ( ( 1o ≈ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ≈ 2o ) → 1o ≈ 2o ) |
10 |
9
|
ex |
⊢ ( 1o ≈ { 𝐴 , 𝐵 } → ( { 𝐴 , 𝐵 } ≈ 2o → 1o ≈ 2o ) ) |
11 |
8 10
|
syl |
⊢ ( { 𝐴 , 𝐵 } ≈ 1o → ( { 𝐴 , 𝐵 } ≈ 2o → 1o ≈ 2o ) ) |
12 |
7 11
|
mtoi |
⊢ ( { 𝐴 , 𝐵 } ≈ 1o → ¬ { 𝐴 , 𝐵 } ≈ 2o ) |
13 |
12
|
a1d |
⊢ ( { 𝐴 , 𝐵 } ≈ 1o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) |
14 |
4 13
|
syl |
⊢ ( ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ∧ { 𝐴 , 𝐴 } ≈ 1o ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) |
15 |
14
|
ex |
⊢ ( { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } → ( { 𝐴 , 𝐴 } ≈ 1o → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) |
16 |
|
prex |
⊢ { 𝐴 , 𝐵 } ∈ V |
17 |
|
eqeng |
⊢ ( { 𝐴 , 𝐵 } ∈ V → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ) ) |
18 |
16 17
|
ax-mp |
⊢ ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → { 𝐴 , 𝐵 } ≈ { 𝐴 , 𝐴 } ) |
19 |
15 18
|
syl11 |
⊢ ( { 𝐴 , 𝐴 } ≈ 1o → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) |
20 |
19
|
a1dd |
⊢ ( { 𝐴 , 𝐴 } ≈ 1o → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) ) |
21 |
3 20
|
syl |
⊢ ( 𝐴 ∈ 𝐶 → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( 𝐵 ∈ 𝐷 → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) ) |
22 |
21
|
com23 |
⊢ ( 𝐴 ∈ 𝐶 → ( 𝐵 ∈ 𝐷 → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) ) |
23 |
22
|
imp |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) ) |
24 |
23
|
pm2.43a |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) |
25 |
2 24
|
syl5 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 = 𝐵 → ¬ { 𝐴 , 𝐵 } ≈ 2o ) ) |
26 |
25
|
necon2ad |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o → 𝐴 ≠ 𝐵 ) ) |
27 |
|
pr2nelem |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ≈ 2o ) |
28 |
27
|
3expia |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( 𝐴 ≠ 𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) ) |
29 |
26 28
|
impbid |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o ↔ 𝐴 ≠ 𝐵 ) ) |