| Step | Hyp | Ref | Expression | 
						
							| 1 |  | preq2 | ⊢ ( 𝐵  =  𝐴  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 2 | 1 | eqcoms | ⊢ ( 𝐴  =  𝐵  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 3 |  | enpr1g | ⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐴 }  ≈  1o ) | 
						
							| 4 |  | entr | ⊢ ( ( { 𝐴 ,  𝐵 }  ≈  { 𝐴 ,  𝐴 }  ∧  { 𝐴 ,  𝐴 }  ≈  1o )  →  { 𝐴 ,  𝐵 }  ≈  1o ) | 
						
							| 5 |  | 1sdom2 | ⊢ 1o  ≺  2o | 
						
							| 6 |  | sdomnen | ⊢ ( 1o  ≺  2o  →  ¬  1o  ≈  2o ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ¬  1o  ≈  2o | 
						
							| 8 |  | ensym | ⊢ ( { 𝐴 ,  𝐵 }  ≈  1o  →  1o  ≈  { 𝐴 ,  𝐵 } ) | 
						
							| 9 |  | entr | ⊢ ( ( 1o  ≈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝐵 }  ≈  2o )  →  1o  ≈  2o ) | 
						
							| 10 | 9 | ex | ⊢ ( 1o  ≈  { 𝐴 ,  𝐵 }  →  ( { 𝐴 ,  𝐵 }  ≈  2o  →  1o  ≈  2o ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( { 𝐴 ,  𝐵 }  ≈  1o  →  ( { 𝐴 ,  𝐵 }  ≈  2o  →  1o  ≈  2o ) ) | 
						
							| 12 | 7 11 | mtoi | ⊢ ( { 𝐴 ,  𝐵 }  ≈  1o  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) | 
						
							| 13 | 12 | a1d | ⊢ ( { 𝐴 ,  𝐵 }  ≈  1o  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 14 | 4 13 | syl | ⊢ ( ( { 𝐴 ,  𝐵 }  ≈  { 𝐴 ,  𝐴 }  ∧  { 𝐴 ,  𝐴 }  ≈  1o )  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 15 | 14 | ex | ⊢ ( { 𝐴 ,  𝐵 }  ≈  { 𝐴 ,  𝐴 }  →  ( { 𝐴 ,  𝐴 }  ≈  1o  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) | 
						
							| 16 |  | prex | ⊢ { 𝐴 ,  𝐵 }  ∈  V | 
						
							| 17 |  | eqeng | ⊢ ( { 𝐴 ,  𝐵 }  ∈  V  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  { 𝐴 ,  𝐵 }  ≈  { 𝐴 ,  𝐴 } ) ) | 
						
							| 18 | 16 17 | ax-mp | ⊢ ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  { 𝐴 ,  𝐵 }  ≈  { 𝐴 ,  𝐴 } ) | 
						
							| 19 | 15 18 | syl11 | ⊢ ( { 𝐴 ,  𝐴 }  ≈  1o  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) | 
						
							| 20 | 19 | a1dd | ⊢ ( { 𝐴 ,  𝐴 }  ≈  1o  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ( 𝐵  ∈  𝐷  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) ) | 
						
							| 21 | 3 20 | syl | ⊢ ( 𝐴  ∈  𝐶  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ( 𝐵  ∈  𝐷  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) ) | 
						
							| 22 | 21 | com23 | ⊢ ( 𝐴  ∈  𝐶  →  ( 𝐵  ∈  𝐷  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) ) | 
						
							| 23 | 22 | imp | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) ) | 
						
							| 24 | 23 | pm2.43a | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 }  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 25 | 2 24 | syl5 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  =  𝐵  →  ¬  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 26 | 25 | necon2ad | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  ≈  2o  →  𝐴  ≠  𝐵 ) ) | 
						
							| 27 |  | enpr2 | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷  ∧  𝐴  ≠  𝐵 )  →  { 𝐴 ,  𝐵 }  ≈  2o ) | 
						
							| 28 | 27 | 3expia | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  ≠  𝐵  →  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 29 | 26 28 | impbid | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  ≈  2o  ↔  𝐴  ≠  𝐵 ) ) |