Step |
Hyp |
Ref |
Expression |
1 |
|
ltrelnq |
⊢ <Q ⊆ ( Q × Q ) |
2 |
|
relxp |
⊢ Rel ( Q × Q ) |
3 |
|
relss |
⊢ ( <Q ⊆ ( Q × Q ) → ( Rel ( Q × Q ) → Rel <Q ) ) |
4 |
1 2 3
|
mp2 |
⊢ Rel <Q |
5 |
4
|
brrelex1i |
⊢ ( 𝐶 <Q 𝐵 → 𝐶 ∈ V ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) |
7 |
6
|
anbi2d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ↔ ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 𝐵 → ( 𝑦 <Q 𝑥 ↔ 𝑦 <Q 𝐵 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) ) ) |
10 |
9
|
imbi1d |
⊢ ( 𝑥 = 𝐵 → ( ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦 ∈ 𝐴 ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 <Q 𝐵 ↔ 𝐶 <Q 𝐵 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑦 = 𝐶 → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) ↔ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) ) ) |
13 |
|
eleq1 |
⊢ ( 𝑦 = 𝐶 → ( 𝑦 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
14 |
12 13
|
imbi12d |
⊢ ( 𝑦 = 𝐶 → ( ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑦 <Q 𝐵 ) → 𝑦 ∈ 𝐴 ) ↔ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) ) |
15 |
|
elnpi |
⊢ ( 𝐴 ∈ P ↔ ( ( 𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q ) ∧ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) ) |
16 |
15
|
simprbi |
⊢ ( 𝐴 ∈ P → ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
17 |
16
|
r19.21bi |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 𝑥 <Q 𝑦 ) ) |
18 |
17
|
simpld |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
19 |
18
|
19.21bi |
⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴 ) ) |
20 |
19
|
imp |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 <Q 𝑥 ) → 𝑦 ∈ 𝐴 ) |
21 |
10 14 20
|
vtocl2g |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ V ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
22 |
5 21
|
sylan2 |
⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 <Q 𝐵 ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
23 |
22
|
adantll |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) ) |
24 |
23
|
pm2.43i |
⊢ ( ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) ∧ 𝐶 <Q 𝐵 ) → 𝐶 ∈ 𝐴 ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 ∈ P ∧ 𝐵 ∈ 𝐴 ) → ( 𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴 ) ) |