Metamath Proof Explorer


Theorem prcom

Description: Commutative law for unordered pairs. (Contributed by NM, 15-Jul-1993)

Ref Expression
Assertion prcom { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }

Proof

Step Hyp Ref Expression
1 uncom ( { 𝐴 } ∪ { 𝐵 } ) = ( { 𝐵 } ∪ { 𝐴 } )
2 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
3 df-pr { 𝐵 , 𝐴 } = ( { 𝐵 } ∪ { 𝐴 } )
4 1 2 3 3eqtr4i { 𝐴 , 𝐵 } = { 𝐵 , 𝐴 }