| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsn2 | ⊢ { 𝐴 }  =  { 𝐴 ,  𝐴 } | 
						
							| 2 |  | ensn1g | ⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 }  ≈  1o ) | 
						
							| 3 |  | endom | ⊢ ( { 𝐴 }  ≈  1o  →  { 𝐴 }  ≼  1o ) | 
						
							| 4 |  | 1sdom2 | ⊢ 1o  ≺  2o | 
						
							| 5 |  | domsdomtr | ⊢ ( ( { 𝐴 }  ≼  1o  ∧  1o  ≺  2o )  →  { 𝐴 }  ≺  2o ) | 
						
							| 6 |  | sdomdom | ⊢ ( { 𝐴 }  ≺  2o  →  { 𝐴 }  ≼  2o ) | 
						
							| 7 | 5 6 | syl | ⊢ ( ( { 𝐴 }  ≼  1o  ∧  1o  ≺  2o )  →  { 𝐴 }  ≼  2o ) | 
						
							| 8 | 3 4 7 | sylancl | ⊢ ( { 𝐴 }  ≈  1o  →  { 𝐴 }  ≼  2o ) | 
						
							| 9 | 2 8 | syl | ⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 }  ≼  2o ) | 
						
							| 10 | 1 9 | eqbrtrrid | ⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐴 }  ≼  2o ) | 
						
							| 11 |  | preq2 | ⊢ ( 𝐵  =  𝐴  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 12 | 11 | breq1d | ⊢ ( 𝐵  =  𝐴  →  ( { 𝐴 ,  𝐵 }  ≼  2o  ↔  { 𝐴 ,  𝐴 }  ≼  2o ) ) | 
						
							| 13 | 10 12 | imbitrrid | ⊢ ( 𝐵  =  𝐴  →  ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐵 }  ≼  2o ) ) | 
						
							| 14 | 13 | eqcoms | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐵 }  ≼  2o ) ) | 
						
							| 15 | 14 | adantrd | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o ) ) | 
						
							| 16 |  | pr2ne | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  ≈  2o  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 17 | 16 | biimprd | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  ≠  𝐵  →  { 𝐴 ,  𝐵 }  ≈  2o ) ) | 
						
							| 18 |  | endom | ⊢ ( { 𝐴 ,  𝐵 }  ≈  2o  →  { 𝐴 ,  𝐵 }  ≼  2o ) | 
						
							| 19 | 17 18 | syl6com | ⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o ) ) | 
						
							| 20 | 15 19 | pm2.61ine | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o ) |