| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfsn2 | 
							⊢ { 𝐴 }  =  { 𝐴 ,  𝐴 }  | 
						
						
							| 2 | 
							
								
							 | 
							ensn1g | 
							⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 }  ≈  1o )  | 
						
						
							| 3 | 
							
								
							 | 
							endom | 
							⊢ ( { 𝐴 }  ≈  1o  →  { 𝐴 }  ≼  1o )  | 
						
						
							| 4 | 
							
								
							 | 
							1sdom2 | 
							⊢ 1o  ≺  2o  | 
						
						
							| 5 | 
							
								
							 | 
							domsdomtr | 
							⊢ ( ( { 𝐴 }  ≼  1o  ∧  1o  ≺  2o )  →  { 𝐴 }  ≺  2o )  | 
						
						
							| 6 | 
							
								
							 | 
							sdomdom | 
							⊢ ( { 𝐴 }  ≺  2o  →  { 𝐴 }  ≼  2o )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( ( { 𝐴 }  ≼  1o  ∧  1o  ≺  2o )  →  { 𝐴 }  ≼  2o )  | 
						
						
							| 8 | 
							
								3 4 7
							 | 
							sylancl | 
							⊢ ( { 𝐴 }  ≈  1o  →  { 𝐴 }  ≼  2o )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 }  ≼  2o )  | 
						
						
							| 10 | 
							
								1 9
							 | 
							eqbrtrrid | 
							⊢ ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐴 }  ≼  2o )  | 
						
						
							| 11 | 
							
								
							 | 
							preq2 | 
							⊢ ( 𝐵  =  𝐴  →  { 𝐴 ,  𝐵 }  =  { 𝐴 ,  𝐴 } )  | 
						
						
							| 12 | 
							
								11
							 | 
							breq1d | 
							⊢ ( 𝐵  =  𝐴  →  ( { 𝐴 ,  𝐵 }  ≼  2o  ↔  { 𝐴 ,  𝐴 }  ≼  2o ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							imbitrrid | 
							⊢ ( 𝐵  =  𝐴  →  ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐵 }  ≼  2o ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							eqcoms | 
							⊢ ( 𝐴  =  𝐵  →  ( 𝐴  ∈  𝐶  →  { 𝐴 ,  𝐵 }  ≼  2o ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantrd | 
							⊢ ( 𝐴  =  𝐵  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o ) )  | 
						
						
							| 16 | 
							
								
							 | 
							pr2ne | 
							⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( { 𝐴 ,  𝐵 }  ≈  2o  ↔  𝐴  ≠  𝐵 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biimprd | 
							⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  ( 𝐴  ≠  𝐵  →  { 𝐴 ,  𝐵 }  ≈  2o ) )  | 
						
						
							| 18 | 
							
								
							 | 
							endom | 
							⊢ ( { 𝐴 ,  𝐵 }  ≈  2o  →  { 𝐴 ,  𝐵 }  ≼  2o )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl6com | 
							⊢ ( 𝐴  ≠  𝐵  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o ) )  | 
						
						
							| 20 | 
							
								15 19
							 | 
							pm2.61ine | 
							⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐷 )  →  { 𝐴 ,  𝐵 }  ≼  2o )  |