Metamath Proof Explorer


Theorem prdom2

Description: An unordered pair has at most two elements. (Contributed by FL, 22-Feb-2011)

Ref Expression
Assertion prdom2 ( ( 𝐴𝐶𝐵𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o )

Proof

Step Hyp Ref Expression
1 dfsn2 { 𝐴 } = { 𝐴 , 𝐴 }
2 ensn1g ( 𝐴𝐶 → { 𝐴 } ≈ 1o )
3 endom ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 1o )
4 1sdom2 1o ≺ 2o
5 domsdomtr ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≺ 2o )
6 sdomdom ( { 𝐴 } ≺ 2o → { 𝐴 } ≼ 2o )
7 5 6 syl ( ( { 𝐴 } ≼ 1o ∧ 1o ≺ 2o ) → { 𝐴 } ≼ 2o )
8 3 4 7 sylancl ( { 𝐴 } ≈ 1o → { 𝐴 } ≼ 2o )
9 2 8 syl ( 𝐴𝐶 → { 𝐴 } ≼ 2o )
10 1 9 eqbrtrrid ( 𝐴𝐶 → { 𝐴 , 𝐴 } ≼ 2o )
11 preq2 ( 𝐵 = 𝐴 → { 𝐴 , 𝐵 } = { 𝐴 , 𝐴 } )
12 11 breq1d ( 𝐵 = 𝐴 → ( { 𝐴 , 𝐵 } ≼ 2o ↔ { 𝐴 , 𝐴 } ≼ 2o ) )
13 10 12 syl5ibr ( 𝐵 = 𝐴 → ( 𝐴𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) )
14 13 eqcoms ( 𝐴 = 𝐵 → ( 𝐴𝐶 → { 𝐴 , 𝐵 } ≼ 2o ) )
15 14 adantrd ( 𝐴 = 𝐵 → ( ( 𝐴𝐶𝐵𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) )
16 pr2ne ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝐴 , 𝐵 } ≈ 2o𝐴𝐵 ) )
17 16 biimprd ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴𝐵 → { 𝐴 , 𝐵 } ≈ 2o ) )
18 endom ( { 𝐴 , 𝐵 } ≈ 2o → { 𝐴 , 𝐵 } ≼ 2o )
19 17 18 syl6com ( 𝐴𝐵 → ( ( 𝐴𝐶𝐵𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o ) )
20 15 19 pm2.61ine ( ( 𝐴𝐶𝐵𝐷 ) → { 𝐴 , 𝐵 } ≼ 2o )