| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsmndd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsmndd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdsmndd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsmndd.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 7 | 3 | elexd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 8 | 2 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 9 |  | eqid | ⊢ ( 0g  ∘  𝑅 )  =  ( 0g  ∘  𝑅 ) | 
						
							| 10 | 1 5 6 7 8 4 9 | prdsidlem | ⊢ ( 𝜑  →  ( ( 0g  ∘  𝑅 )  ∈  ( Base ‘ 𝑌 )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑏 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 12 | 1 2 3 4 | prdsmndd | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) | 
						
							| 13 | 5 6 | mndid | ⊢ ( 𝑌  ∈  Mnd  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 )  =  𝑏 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ( Base ‘ 𝑌 ) ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 )  =  𝑏 ) ) | 
						
							| 15 | 5 11 6 14 | ismgmid | ⊢ ( 𝜑  →  ( ( ( 0g  ∘  𝑅 )  ∈  ( Base ‘ 𝑌 )  ∧  ∀ 𝑏  ∈  ( Base ‘ 𝑌 ) ( ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑏 )  =  𝑏  ∧  ( 𝑏 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑏 ) )  ↔  ( 0g ‘ 𝑌 )  =  ( 0g  ∘  𝑅 ) ) ) | 
						
							| 16 | 10 15 | mpbid | ⊢ ( 𝜑  →  ( 0g ‘ 𝑌 )  =  ( 0g  ∘  𝑅 ) ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( 𝜑  →  ( 0g  ∘  𝑅 )  =  ( 0g ‘ 𝑌 ) ) |