| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prds1.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prds1.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prds1.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prds1.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Ring ) | 
						
							| 5 |  | eqid | ⊢ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) )  =  ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) | 
						
							| 6 |  | mgpf | ⊢ ( mulGrp  ↾  Ring ) : Ring ⟶ Mnd | 
						
							| 7 |  | fco2 | ⊢ ( ( ( mulGrp  ↾  Ring ) : Ring ⟶ Mnd  ∧  𝑅 : 𝐼 ⟶ Ring )  →  ( mulGrp  ∘  𝑅 ) : 𝐼 ⟶ Mnd ) | 
						
							| 8 | 6 4 7 | sylancr | ⊢ ( 𝜑  →  ( mulGrp  ∘  𝑅 ) : 𝐼 ⟶ Mnd ) | 
						
							| 9 | 5 2 3 8 | prds0g | ⊢ ( 𝜑  →  ( 0g  ∘  ( mulGrp  ∘  𝑅 ) )  =  ( 0g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 12 | 4 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 13 | 1 11 5 2 3 12 | prdsmgp | ⊢ ( 𝜑  →  ( ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) )  ∧  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) ) | 
						
							| 14 | 13 | simpld | ⊢ ( 𝜑  →  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  =  ( Base ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 15 | 13 | simprd | ⊢ ( 𝜑  →  ( +g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 16 | 15 | oveqdr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) )  ∧  𝑦  ∈  ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) )  →  ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) 𝑦 ) ) | 
						
							| 17 | 10 14 16 | grpidpropd | ⊢ ( 𝜑  →  ( 0g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( 0g ‘ ( 𝑆 Xs ( mulGrp  ∘  𝑅 ) ) ) ) | 
						
							| 18 | 9 17 | eqtr4d | ⊢ ( 𝜑  →  ( 0g  ∘  ( mulGrp  ∘  𝑅 ) )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 19 |  | df-ur | ⊢ 1r  =  ( 0g  ∘  mulGrp ) | 
						
							| 20 | 19 | coeq1i | ⊢ ( 1r  ∘  𝑅 )  =  ( ( 0g  ∘  mulGrp )  ∘  𝑅 ) | 
						
							| 21 |  | coass | ⊢ ( ( 0g  ∘  mulGrp )  ∘  𝑅 )  =  ( 0g  ∘  ( mulGrp  ∘  𝑅 ) ) | 
						
							| 22 | 20 21 | eqtri | ⊢ ( 1r  ∘  𝑅 )  =  ( 0g  ∘  ( mulGrp  ∘  𝑅 ) ) | 
						
							| 23 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 24 | 11 23 | ringidval | ⊢ ( 1r ‘ 𝑌 )  =  ( 0g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 25 | 18 22 24 | 3eqtr4g | ⊢ ( 𝜑  →  ( 1r  ∘  𝑅 )  =  ( 1r ‘ 𝑌 ) ) |