| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdscmnd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdscmnd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdscmnd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsgabld.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Abel ) | 
						
							| 5 |  | ablgrp | ⊢ ( 𝑎  ∈  Abel  →  𝑎  ∈  Grp ) | 
						
							| 6 | 5 | ssriv | ⊢ Abel  ⊆  Grp | 
						
							| 7 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Abel  ∧  Abel  ⊆  Grp )  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 8 | 4 6 7 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 9 | 1 2 3 8 | prdsgrpd | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 10 |  | ablcmn | ⊢ ( 𝑎  ∈  Abel  →  𝑎  ∈  CMnd ) | 
						
							| 11 | 10 | ssriv | ⊢ Abel  ⊆  CMnd | 
						
							| 12 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ Abel  ∧  Abel  ⊆  CMnd )  →  𝑅 : 𝐼 ⟶ CMnd ) | 
						
							| 13 | 4 11 12 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ CMnd ) | 
						
							| 14 | 1 2 3 13 | prdscmnd | ⊢ ( 𝜑  →  𝑌  ∈  CMnd ) | 
						
							| 15 |  | isabl | ⊢ ( 𝑌  ∈  Abel  ↔  ( 𝑌  ∈  Grp  ∧  𝑌  ∈  CMnd ) ) | 
						
							| 16 | 9 14 15 | sylanbrc | ⊢ ( 𝜑  →  𝑌  ∈  Abel ) |