Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbas.p |
⊢ 𝑃 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsbas.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
3 |
|
prdsbas.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
4 |
|
prdsbas.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
prdsbas.i |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
7 |
|
eqidd |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
12 |
|
eqidd |
⊢ ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ) |
13 |
|
eqidd |
⊢ ( 𝜑 → { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) |
14 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ) |
15 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |
16 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑎 ∈ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) |
17 |
1 6 5 7 8 9 10 11 12 13 14 15 16 2 3
|
prdsval |
⊢ ( 𝜑 → 𝑃 = ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) |
18 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
19 |
18
|
strfvss |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ( 𝑅 ‘ 𝑥 ) |
20 |
|
fvssunirn |
⊢ ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 |
21 |
|
rnss |
⊢ ( ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran 𝑅 → ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 ) |
22 |
|
uniss |
⊢ ( ran ( 𝑅 ‘ 𝑥 ) ⊆ ran ∪ ran 𝑅 → ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 ) |
23 |
20 21 22
|
mp2b |
⊢ ∪ ran ( 𝑅 ‘ 𝑥 ) ⊆ ∪ ran ∪ ran 𝑅 |
24 |
19 23
|
sstri |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 |
25 |
24
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 |
26 |
|
iunss |
⊢ ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 ↔ ∀ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 ) |
27 |
25 26
|
mpbir |
⊢ ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 |
28 |
|
rnexg |
⊢ ( 𝑅 ∈ 𝑊 → ran 𝑅 ∈ V ) |
29 |
|
uniexg |
⊢ ( ran 𝑅 ∈ V → ∪ ran 𝑅 ∈ V ) |
30 |
3 28 29
|
3syl |
⊢ ( 𝜑 → ∪ ran 𝑅 ∈ V ) |
31 |
|
rnexg |
⊢ ( ∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V ) |
32 |
|
uniexg |
⊢ ( ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V ) |
33 |
30 31 32
|
3syl |
⊢ ( 𝜑 → ∪ ran ∪ ran 𝑅 ∈ V ) |
34 |
|
ssexg |
⊢ ( ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ∪ ran ∪ ran 𝑅 ∧ ∪ ran ∪ ran 𝑅 ∈ V ) → ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) |
35 |
27 33 34
|
sylancr |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) |
36 |
|
ixpssmap2g |
⊢ ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↑m 𝐼 ) ) |
37 |
|
ovex |
⊢ ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↑m 𝐼 ) ∈ V |
38 |
37
|
ssex |
⊢ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ⊆ ( ∪ 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↑m 𝐼 ) → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) |
39 |
35 36 38
|
3syl |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) |
40 |
|
snsstp1 |
⊢ { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 } ⊆ { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } |
41 |
|
ssun1 |
⊢ { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
42 |
40 41
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 } ⊆ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) |
43 |
|
ssun1 |
⊢ ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ⊆ ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
44 |
42 43
|
sstri |
⊢ { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 } ⊆ ( ( { 〈 ( Base ‘ ndx ) , X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) 〉 , 〈 ( +g ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( .r ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 } ∪ { 〈 ( Scalar ‘ ndx ) , 𝑆 〉 , 〈 ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) 〉 , 〈 ( ·𝑖 ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } ) ∪ ( { 〈 ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) 〉 , 〈 ( le ‘ ndx ) , { 〈 𝑓 , 𝑔 〉 ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } 〉 , 〈 ( dist ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) 〉 } ∪ { 〈 ( Hom ‘ ndx ) , ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 , 〈 ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) × X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) , 𝑐 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd ‘ 𝑎 ) ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) , 𝑔 ∈ X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ↦ X 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) , ( ( 2nd ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) |
45 |
17 4 18 39 44
|
prdsbaslem |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |