Metamath Proof Explorer


Theorem prdsbas

Description: Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 15-Aug-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by Zhi Wang, 18-Aug-2024)

Ref Expression
Hypotheses prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
prdsbas.s ( 𝜑𝑆𝑉 )
prdsbas.r ( 𝜑𝑅𝑊 )
prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
Assertion prdsbas ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 prdsbas.p 𝑃 = ( 𝑆 Xs 𝑅 )
2 prdsbas.s ( 𝜑𝑆𝑉 )
3 prdsbas.r ( 𝜑𝑅𝑊 )
4 prdsbas.b 𝐵 = ( Base ‘ 𝑃 )
5 prdsbas.i ( 𝜑 → dom 𝑅 = 𝐼 )
6 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
7 eqidd ( 𝜑X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )
8 eqidd ( 𝜑 → ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
9 eqidd ( 𝜑 → ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
10 eqidd ( 𝜑 → ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) )
11 eqidd ( 𝜑 → ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) = ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) )
12 eqidd ( 𝜑 → ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) = ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) )
13 eqidd ( 𝜑 → { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } = { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } )
14 eqidd ( 𝜑 → ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) = ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) )
15 eqidd ( 𝜑 → ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) = ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) )
16 eqidd ( 𝜑 → ( 𝑎 ∈ ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) × X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) , 𝑐X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) = ( 𝑎 ∈ ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) × X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) , 𝑐X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) )
17 1 6 5 7 8 9 10 11 12 13 14 15 16 2 3 prdsval ( 𝜑𝑃 = ( ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) × X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) , 𝑐X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) ) )
18 baseid Base = Slot ( Base ‘ ndx )
19 18 strfvss ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ( 𝑅𝑥 )
20 fvssunirn ( 𝑅𝑥 ) ⊆ ran 𝑅
21 rnss ( ( 𝑅𝑥 ) ⊆ ran 𝑅 → ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
22 uniss ( ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅 )
23 20 21 22 mp2b ran ( 𝑅𝑥 ) ⊆ ran ran 𝑅
24 19 23 sstri ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅
25 24 rgenw 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅
26 iunss ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅 ↔ ∀ 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅 )
27 25 26 mpbir 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅
28 rnexg ( 𝑅𝑊 → ran 𝑅 ∈ V )
29 uniexg ( ran 𝑅 ∈ V → ran 𝑅 ∈ V )
30 3 28 29 3syl ( 𝜑 ran 𝑅 ∈ V )
31 rnexg ( ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
32 uniexg ( ran ran 𝑅 ∈ V → ran ran 𝑅 ∈ V )
33 30 31 32 3syl ( 𝜑 ran ran 𝑅 ∈ V )
34 ssexg ( ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ran ran 𝑅 ran ran 𝑅 ∈ V ) → 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
35 27 33 34 sylancr ( 𝜑 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
36 ixpssmap2g ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V → X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↑m 𝐼 ) )
37 ovex ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↑m 𝐼 ) ∈ V
38 37 ssex ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⊆ ( 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↑m 𝐼 ) → X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
39 35 36 38 3syl ( 𝜑X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∈ V )
40 snsstp1 { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ }
41 ssun1 { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
42 40 41 sstri { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ } ⊆ ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } )
43 ssun1 ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ⊆ ( ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) × X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) , 𝑐X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
44 42 43 sstri { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ } ⊆ ( ( { ⟨ ( Base ‘ ndx ) , X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ⟩ , ⟨ ( +g ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( +g ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( .r ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( .r ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝑆 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ( 𝑓 ∈ ( Base ‘ 𝑆 ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑥𝐼 ↦ ( 𝑓 ( ·𝑠 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑆 Σg ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( ·𝑖 ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ) ) ⟩ } ) ∪ ( { ⟨ ( TopSet ‘ ndx ) , ( ∏t ‘ ( TopOpen ∘ 𝑅 ) ) ⟩ , ⟨ ( le ‘ ndx ) , { ⟨ 𝑓 , 𝑔 ⟩ ∣ ( { 𝑓 , 𝑔 } ⊆ X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ∧ ∀ 𝑥𝐼 ( 𝑓𝑥 ) ( le ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) } ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) ( dist ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) ⟩ } ∪ { ⟨ ( Hom ‘ ndx ) , ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ⟩ , ⟨ ( comp ‘ ndx ) , ( 𝑎 ∈ ( X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) × X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ) , 𝑐X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ ( 𝑑 ∈ ( ( 2nd𝑎 ) ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) 𝑐 ) , 𝑒 ∈ ( ( 𝑓X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) , 𝑔X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) ↦ X 𝑥𝐼 ( ( 𝑓𝑥 ) ( Hom ‘ ( 𝑅𝑥 ) ) ( 𝑔𝑥 ) ) ) ‘ 𝑎 ) ↦ ( 𝑥𝐼 ↦ ( ( 𝑑𝑥 ) ( ⟨ ( ( 1st𝑎 ) ‘ 𝑥 ) , ( ( 2nd𝑎 ) ‘ 𝑥 ) ⟩ ( comp ‘ ( 𝑅𝑥 ) ) ( 𝑐𝑥 ) ) ( 𝑒𝑥 ) ) ) ) ) ⟩ } ) )
45 17 4 18 39 44 prdsvallem ( 𝜑𝐵 = X 𝑥𝐼 ( Base ‘ ( 𝑅𝑥 ) ) )