| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt2.y | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 2 |  | prdsbasmpt2.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt2.r | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋 ) | 
						
							| 6 |  | prdsbasmpt2.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  𝑅 ) | 
						
							| 8 | 7 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  Fn  𝐼 ) | 
						
							| 9 | 5 8 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  Fn  𝐼 ) | 
						
							| 10 | 1 2 3 4 9 | prdsbas2 | ⊢ ( 𝜑  →  𝐵  =  X 𝑦  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ) | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑥 Base | 
						
							| 12 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) | 
						
							| 13 | 11 12 | nffv | ⊢ Ⅎ 𝑥 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑦 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) | 
						
							| 15 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑥  →  ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) )  =  ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ) | 
						
							| 16 | 13 14 15 | cbvixp | ⊢ X 𝑦  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) )  =  X 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) | 
						
							| 17 | 10 16 | eqtrdi | ⊢ ( 𝜑  →  𝐵  =  X 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ) | 
						
							| 18 | 7 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 19 6 | eqtr4di | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  𝐾 ) | 
						
							| 21 | 20 | ralimiaa | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋  →  ∀ 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  𝐾 ) | 
						
							| 22 |  | ixpeq2 | ⊢ ( ∀ 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  𝐾  →  X 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  X 𝑥  ∈  𝐼 𝐾 ) | 
						
							| 23 | 5 21 22 | 3syl | ⊢ ( 𝜑  →  X 𝑥  ∈  𝐼 ( Base ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  X 𝑥  ∈  𝐼 𝐾 ) | 
						
							| 24 | 17 23 | eqtrd | ⊢ ( 𝜑  →  𝐵  =  X 𝑥  ∈  𝐼 𝐾 ) |