Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbasmpt2.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
2 |
|
prdsbasmpt2.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsbasmpt2.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdsbasmpt2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
prdsbasmpt2.r |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) |
6 |
|
prdsbasmpt2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
7 |
|
prdsbascl.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
9 |
8
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
11 |
1 2 3 4 10 7
|
prdsbasfn |
⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
12 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐼 ↔ 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
13 |
11 12
|
sylib |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
14 |
13 7
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ) |
15 |
1 2 3 4 5 6
|
prdsbasmpt2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) ) |
16 |
14 15
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |