Metamath Proof Explorer


Theorem prdsbascl

Description: An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses prdsbasmpt2.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
prdsbasmpt2.b 𝐵 = ( Base ‘ 𝑌 )
prdsbasmpt2.s ( 𝜑𝑆𝑉 )
prdsbasmpt2.i ( 𝜑𝐼𝑊 )
prdsbasmpt2.r ( 𝜑 → ∀ 𝑥𝐼 𝑅𝑋 )
prdsbasmpt2.k 𝐾 = ( Base ‘ 𝑅 )
prdsbascl.f ( 𝜑𝐹𝐵 )
Assertion prdsbascl ( 𝜑 → ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
2 prdsbasmpt2.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsbasmpt2.s ( 𝜑𝑆𝑉 )
4 prdsbasmpt2.i ( 𝜑𝐼𝑊 )
5 prdsbasmpt2.r ( 𝜑 → ∀ 𝑥𝐼 𝑅𝑋 )
6 prdsbasmpt2.k 𝐾 = ( Base ‘ 𝑅 )
7 prdsbascl.f ( 𝜑𝐹𝐵 )
8 eqid ( 𝑥𝐼𝑅 ) = ( 𝑥𝐼𝑅 )
9 8 fnmpt ( ∀ 𝑥𝐼 𝑅𝑋 → ( 𝑥𝐼𝑅 ) Fn 𝐼 )
10 5 9 syl ( 𝜑 → ( 𝑥𝐼𝑅 ) Fn 𝐼 )
11 1 2 3 4 10 7 prdsbasfn ( 𝜑𝐹 Fn 𝐼 )
12 dffn5 ( 𝐹 Fn 𝐼𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
13 11 12 sylib ( 𝜑𝐹 = ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) )
14 13 7 eqeltrrd ( 𝜑 → ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) ∈ 𝐵 )
15 1 2 3 4 5 6 prdsbasmpt2 ( 𝜑 → ( ( 𝑥𝐼 ↦ ( 𝐹𝑥 ) ) ∈ 𝐵 ↔ ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ 𝐾 ) )
16 14 15 mpbid ( 𝜑 → ∀ 𝑥𝐼 ( 𝐹𝑥 ) ∈ 𝐾 )