Description: Lemma for structure products. (Contributed by Mario Carneiro, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | prdsbasex.b | ⊢ 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| Assertion | prdsbasex | ⊢ 𝐵 ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prdsbasex.b | ⊢ 𝐵 = X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | |
| 2 | ixpexg | ⊢ ( ∀ 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V → X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) | |
| 3 | fvexd | ⊢ ( 𝑥 ∈ dom 𝑅 → ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V ) | |
| 4 | 2 3 | mprg | ⊢ X 𝑥 ∈ dom 𝑅 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ V | 
| 5 | 1 4 | eqeltri | ⊢ 𝐵 ∈ V |