Metamath Proof Explorer


Theorem prdsbasmpt2

Description: A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbasmpt2.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
prdsbasmpt2.b 𝐵 = ( Base ‘ 𝑌 )
prdsbasmpt2.s ( 𝜑𝑆𝑉 )
prdsbasmpt2.i ( 𝜑𝐼𝑊 )
prdsbasmpt2.r ( 𝜑 → ∀ 𝑥𝐼 𝑅𝑋 )
prdsbasmpt2.k 𝐾 = ( Base ‘ 𝑅 )
Assertion prdsbasmpt2 ( 𝜑 → ( ( 𝑥𝐼𝑈 ) ∈ 𝐵 ↔ ∀ 𝑥𝐼 𝑈𝐾 ) )

Proof

Step Hyp Ref Expression
1 prdsbasmpt2.y 𝑌 = ( 𝑆 Xs ( 𝑥𝐼𝑅 ) )
2 prdsbasmpt2.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsbasmpt2.s ( 𝜑𝑆𝑉 )
4 prdsbasmpt2.i ( 𝜑𝐼𝑊 )
5 prdsbasmpt2.r ( 𝜑 → ∀ 𝑥𝐼 𝑅𝑋 )
6 prdsbasmpt2.k 𝐾 = ( Base ‘ 𝑅 )
7 1 2 3 4 5 6 prdsbas3 ( 𝜑𝐵 = X 𝑥𝐼 𝐾 )
8 7 eleq2d ( 𝜑 → ( ( 𝑥𝐼𝑈 ) ∈ 𝐵 ↔ ( 𝑥𝐼𝑈 ) ∈ X 𝑥𝐼 𝐾 ) )
9 mptelixpg ( 𝐼𝑊 → ( ( 𝑥𝐼𝑈 ) ∈ X 𝑥𝐼 𝐾 ↔ ∀ 𝑥𝐼 𝑈𝐾 ) )
10 4 9 syl ( 𝜑 → ( ( 𝑥𝐼𝑈 ) ∈ X 𝑥𝐼 𝐾 ↔ ∀ 𝑥𝐼 𝑈𝐾 ) )
11 8 10 bitrd ( 𝜑 → ( ( 𝑥𝐼𝑈 ) ∈ 𝐵 ↔ ∀ 𝑥𝐼 𝑈𝐾 ) )