Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbasmpt2.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
2 |
|
prdsbasmpt2.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsbasmpt2.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdsbasmpt2.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
5 |
|
prdsbasmpt2.r |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑋 ) |
6 |
|
prdsbasmpt2.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
7 |
1 2 3 4 5 6
|
prdsbas3 |
⊢ ( 𝜑 → 𝐵 = X 𝑥 ∈ 𝐼 𝐾 ) |
8 |
7
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ) ) |
9 |
|
mptelixpg |
⊢ ( 𝐼 ∈ 𝑊 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ X 𝑥 ∈ 𝐼 𝐾 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |
11 |
8 10
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐾 ) ) |