| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbasmpt.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 6 |  | prdsbasmpt.t | ⊢ ( 𝜑  →  𝑇  ∈  𝐵 ) | 
						
							| 7 |  | prdsbasprj.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐼 ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( 𝑇 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝐽 ) ) | 
						
							| 9 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐽  →  ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 10 | 8 9 | eleq12d | ⊢ ( 𝑥  =  𝐽  →  ( ( 𝑇 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↔  ( 𝑇 ‘ 𝐽 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) ) | 
						
							| 11 | 1 2 3 4 5 | prdsbas2 | ⊢ ( 𝜑  →  𝐵  =  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 12 | 6 11 | eleqtrd | ⊢ ( 𝜑  →  𝑇  ∈  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 13 |  | elixp2 | ⊢ ( 𝑇  ∈  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  ↔  ( 𝑇  ∈  V  ∧  𝑇  Fn  𝐼  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑇 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) ) | 
						
							| 14 | 13 | simp3bi | ⊢ ( 𝑇  ∈  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  𝐼 ( 𝑇 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 15 | 12 14 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝑇 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 16 | 10 15 7 | rspcdva | ⊢ ( 𝜑  →  ( 𝑇 ‘ 𝐽 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝐽 ) ) ) |