Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsbnd.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsbnd.v |
⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
4 |
|
prdsbnd.e |
⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) |
5 |
|
prdsbnd.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
6 |
|
prdsbnd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
7 |
|
prdsbnd.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
8 |
|
prdsbnd.r |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
9 |
|
prdsbnd.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Bnd ‘ 𝑉 ) ) |
10 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
11 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
12 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
13 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
14 |
|
bndmet |
⊢ ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
15 |
9 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
16 |
10 11 3 4 12 6 7 13 15
|
prdsmet |
⊢ ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
17 |
|
dffn5 |
⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
18 |
8 17
|
sylib |
⊢ ( 𝜑 → 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
20 |
1 19
|
eqtrid |
⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
22 |
5 21
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
23 |
20
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
24 |
2 23
|
eqtrid |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
26 |
16 22 25
|
3eltr4d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
27 |
|
isbnd3 |
⊢ ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) ↔ ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) ) |
28 |
27
|
simprbi |
⊢ ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) → ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) |
29 |
9 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) |
31 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑘 ‘ 𝑥 ) → ( 0 [,] 𝑤 ) = ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) |
32 |
31
|
feq3d |
⊢ ( 𝑤 = ( 𝑘 ‘ 𝑥 ) → ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ↔ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) |
33 |
32
|
ac6sfi |
⊢ ( ( 𝐼 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐼 ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) → ∃ 𝑘 ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) |
34 |
7 30 33
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑘 ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) |
35 |
|
frn |
⊢ ( 𝑘 : 𝐼 ⟶ ℝ → ran 𝑘 ⊆ ℝ ) |
36 |
35
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ran 𝑘 ⊆ ℝ ) |
37 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
38 |
37
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℝ ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → { 0 } ⊆ ℝ ) |
40 |
36 39
|
unssd |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) |
41 |
|
ffn |
⊢ ( 𝑘 : 𝐼 ⟶ ℝ → 𝑘 Fn 𝐼 ) |
42 |
|
dffn4 |
⊢ ( 𝑘 Fn 𝐼 ↔ 𝑘 : 𝐼 –onto→ ran 𝑘 ) |
43 |
41 42
|
sylib |
⊢ ( 𝑘 : 𝐼 ⟶ ℝ → 𝑘 : 𝐼 –onto→ ran 𝑘 ) |
44 |
|
fofi |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑘 : 𝐼 –onto→ ran 𝑘 ) → ran 𝑘 ∈ Fin ) |
45 |
7 43 44
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ran 𝑘 ∈ Fin ) |
46 |
|
snfi |
⊢ { 0 } ∈ Fin |
47 |
|
unfi |
⊢ ( ( ran 𝑘 ∈ Fin ∧ { 0 } ∈ Fin ) → ( ran 𝑘 ∪ { 0 } ) ∈ Fin ) |
48 |
45 46 47
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ∈ Fin ) |
49 |
|
ssun2 |
⊢ { 0 } ⊆ ( ran 𝑘 ∪ { 0 } ) |
50 |
|
c0ex |
⊢ 0 ∈ V |
51 |
50
|
snid |
⊢ 0 ∈ { 0 } |
52 |
49 51
|
sselii |
⊢ 0 ∈ ( ran 𝑘 ∪ { 0 } ) |
53 |
|
ne0i |
⊢ ( 0 ∈ ( ran 𝑘 ∪ { 0 } ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ) |
54 |
52 53
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ) |
55 |
|
ltso |
⊢ < Or ℝ |
56 |
|
fisupcl |
⊢ ( ( < Or ℝ ∧ ( ( ran 𝑘 ∪ { 0 } ) ∈ Fin ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) ) |
57 |
55 56
|
mpan |
⊢ ( ( ( ran 𝑘 ∪ { 0 } ) ∈ Fin ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) ) |
58 |
48 54 40 57
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) ) |
59 |
40 58
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) |
60 |
59
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) |
61 |
|
metf |
⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) |
62 |
|
ffn |
⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
63 |
26 61 62
|
3syl |
⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
65 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
66 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝑓 ∈ 𝐵 ) |
68 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) |
69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝑔 ∈ 𝐵 ) |
70 |
|
metcl |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
71 |
65 67 69 70
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
72 |
|
metge0 |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
73 |
65 67 69 72
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) ) |
74 |
22
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) 𝑔 ) ) |
75 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
76 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ Fin ) |
77 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
78 |
77
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑅 ‘ 𝑥 ) ∈ V ) |
79 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
80 |
66 79
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
81 |
68 79
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
82 |
10 11 75 76 78 80 81 3 4 12
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
83 |
74 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
85 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
86 |
10 11 75 76 78 3 80
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
87 |
86
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
88 |
10 11 75 76 78 3 81
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
89 |
88
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
90 |
|
metcl |
⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
91 |
85 87 89 90
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
92 |
91
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
93 |
|
ffvelrn |
⊢ ( ( 𝑘 : 𝐼 ⟶ ℝ ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑥 ) ∈ ℝ ) |
94 |
93
|
ad2ant2lr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ∈ ℝ ) |
95 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) |
96 |
95
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) |
97 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) |
98 |
87
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
99 |
89
|
ad2ant2r |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
100 |
97 98 99
|
fovrnd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) |
101 |
|
0re |
⊢ 0 ∈ ℝ |
102 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑘 ‘ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑘 ‘ 𝑥 ) ) ) ) |
103 |
101 94 102
|
sylancr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ↔ ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑘 ‘ 𝑥 ) ) ) ) |
104 |
100 103
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∧ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑘 ‘ 𝑥 ) ) ) |
105 |
104
|
simp3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ ( 𝑘 ‘ 𝑥 ) ) |
106 |
40
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) |
107 |
106
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) |
108 |
52 53
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ) |
109 |
|
fimaxre2 |
⊢ ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ∈ Fin ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) |
110 |
40 48 109
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) |
111 |
110
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) |
112 |
111
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) |
113 |
|
ssun1 |
⊢ ran 𝑘 ⊆ ( ran 𝑘 ∪ { 0 } ) |
114 |
41
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝑘 Fn 𝐼 ) |
115 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝑥 ∈ 𝐼 ) |
116 |
|
fnfvelrn |
⊢ ( ( 𝑘 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑘 ‘ 𝑥 ) ∈ ran 𝑘 ) |
117 |
114 115 116
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ∈ ran 𝑘 ) |
118 |
113 117
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ∈ ( ran 𝑘 ∪ { 0 } ) ) |
119 |
|
suprub |
⊢ ( ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) ∧ ( 𝑘 ‘ 𝑥 ) ∈ ( ran 𝑘 ∪ { 0 } ) ) → ( 𝑘 ‘ 𝑥 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
120 |
107 108 112 118 119
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑘 ‘ 𝑥 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
121 |
92 94 96 105 120
|
letrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥 ∈ 𝐼 ∧ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
122 |
121
|
expr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
123 |
122
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
124 |
123
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
125 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
126 |
125
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V |
127 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
128 |
|
breq1 |
⊢ ( 𝑤 = ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) → ( 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
129 |
127 128
|
ralrnmptw |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
130 |
126 129
|
ax-mp |
⊢ ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
131 |
124 130
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
132 |
40
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) |
133 |
52 53
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ) |
134 |
110
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) |
135 |
52
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 0 ∈ ( ran 𝑘 ∪ { 0 } ) ) |
136 |
|
suprub |
⊢ ( ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤 ≤ 𝑧 ) ∧ 0 ∈ ( ran 𝑘 ∪ { 0 } ) ) → 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
137 |
132 133 134 135 136
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
138 |
|
elsni |
⊢ ( 𝑤 ∈ { 0 } → 𝑤 = 0 ) |
139 |
138
|
breq1d |
⊢ ( 𝑤 ∈ { 0 } → ( 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
140 |
137 139
|
syl5ibrcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑤 ∈ { 0 } → 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
141 |
140
|
ralrimiv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∀ 𝑤 ∈ { 0 } 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
142 |
|
ralunb |
⊢ ( ∀ 𝑤 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∧ ∀ 𝑤 ∈ { 0 } 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
143 |
131 141 142
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∀ 𝑤 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
144 |
91
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ ) |
145 |
144
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ ) |
146 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ ) |
147 |
146
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ ) |
148 |
145 147
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ ) |
149 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
150 |
148 149
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
152 |
60
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) |
153 |
152
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ* ) |
154 |
|
supxrleub |
⊢ ( ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑤 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
155 |
151 153 154
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑤 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
156 |
143 155
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
157 |
84 156
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) |
158 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) → ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ∧ ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) ) |
159 |
101 152 158
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ∧ ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) ) |
160 |
71 73 157 159
|
mpbir3and |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
161 |
160
|
an32s |
⊢ ( ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
162 |
161
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
163 |
|
ffnov |
⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) ) |
164 |
64 162 163
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
165 |
|
oveq2 |
⊢ ( 𝑚 = sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) → ( 0 [,] 𝑚 ) = ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) |
166 |
165
|
feq3d |
⊢ ( 𝑚 = sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) → ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ↔ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) ) |
167 |
166
|
rspcev |
⊢ ( ( sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ∧ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ) |
168 |
60 164 167
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘 ‘ 𝑥 ) ) ) ) → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ) |
169 |
34 168
|
exlimddv |
⊢ ( 𝜑 → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ) |
170 |
|
isbnd3 |
⊢ ( 𝐷 ∈ ( Bnd ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ) ) |
171 |
26 169 170
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ ( Bnd ‘ 𝐵 ) ) |