Metamath Proof Explorer


Theorem prdsbnd

Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdsbnd.b 𝐵 = ( Base ‘ 𝑌 )
prdsbnd.v 𝑉 = ( Base ‘ ( 𝑅𝑥 ) )
prdsbnd.e 𝐸 = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) )
prdsbnd.d 𝐷 = ( dist ‘ 𝑌 )
prdsbnd.s ( 𝜑𝑆𝑊 )
prdsbnd.i ( 𝜑𝐼 ∈ Fin )
prdsbnd.r ( 𝜑𝑅 Fn 𝐼 )
prdsbnd.m ( ( 𝜑𝑥𝐼 ) → 𝐸 ∈ ( Bnd ‘ 𝑉 ) )
Assertion prdsbnd ( 𝜑𝐷 ∈ ( Bnd ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 prdsbnd.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdsbnd.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsbnd.v 𝑉 = ( Base ‘ ( 𝑅𝑥 ) )
4 prdsbnd.e 𝐸 = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) )
5 prdsbnd.d 𝐷 = ( dist ‘ 𝑌 )
6 prdsbnd.s ( 𝜑𝑆𝑊 )
7 prdsbnd.i ( 𝜑𝐼 ∈ Fin )
8 prdsbnd.r ( 𝜑𝑅 Fn 𝐼 )
9 prdsbnd.m ( ( 𝜑𝑥𝐼 ) → 𝐸 ∈ ( Bnd ‘ 𝑉 ) )
10 eqid ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
11 eqid ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
12 eqid ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
13 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ V )
14 bndmet ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
15 9 14 syl ( ( 𝜑𝑥𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
16 10 11 3 4 12 6 7 13 15 prdsmet ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ) )
17 dffn5 ( 𝑅 Fn 𝐼𝑅 = ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
18 8 17 sylib ( 𝜑𝑅 = ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
19 18 oveq2d ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
20 1 19 syl5eq ( 𝜑𝑌 = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
21 20 fveq2d ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
22 5 21 syl5eq ( 𝜑𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
23 20 fveq2d ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
24 2 23 syl5eq ( 𝜑𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
25 24 fveq2d ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ) )
26 16 22 25 3eltr4d ( 𝜑𝐷 ∈ ( Met ‘ 𝐵 ) )
27 isbnd3 ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) ↔ ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) )
28 27 simprbi ( 𝐸 ∈ ( Bnd ‘ 𝑉 ) → ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) )
29 9 28 syl ( ( 𝜑𝑥𝐼 ) → ∃ 𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) )
30 29 ralrimiva ( 𝜑 → ∀ 𝑥𝐼𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) )
31 oveq2 ( 𝑤 = ( 𝑘𝑥 ) → ( 0 [,] 𝑤 ) = ( 0 [,] ( 𝑘𝑥 ) ) )
32 31 feq3d ( 𝑤 = ( 𝑘𝑥 ) → ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ↔ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) )
33 32 ac6sfi ( ( 𝐼 ∈ Fin ∧ ∀ 𝑥𝐼𝑤 ∈ ℝ 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] 𝑤 ) ) → ∃ 𝑘 ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) )
34 7 30 33 syl2anc ( 𝜑 → ∃ 𝑘 ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) )
35 frn ( 𝑘 : 𝐼 ⟶ ℝ → ran 𝑘 ⊆ ℝ )
36 35 adantl ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ran 𝑘 ⊆ ℝ )
37 0red ( 𝜑 → 0 ∈ ℝ )
38 37 snssd ( 𝜑 → { 0 } ⊆ ℝ )
39 38 adantr ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → { 0 } ⊆ ℝ )
40 36 39 unssd ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ )
41 ffn ( 𝑘 : 𝐼 ⟶ ℝ → 𝑘 Fn 𝐼 )
42 dffn4 ( 𝑘 Fn 𝐼𝑘 : 𝐼onto→ ran 𝑘 )
43 41 42 sylib ( 𝑘 : 𝐼 ⟶ ℝ → 𝑘 : 𝐼onto→ ran 𝑘 )
44 fofi ( ( 𝐼 ∈ Fin ∧ 𝑘 : 𝐼onto→ ran 𝑘 ) → ran 𝑘 ∈ Fin )
45 7 43 44 syl2an ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ran 𝑘 ∈ Fin )
46 snfi { 0 } ∈ Fin
47 unfi ( ( ran 𝑘 ∈ Fin ∧ { 0 } ∈ Fin ) → ( ran 𝑘 ∪ { 0 } ) ∈ Fin )
48 45 46 47 sylancl ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ∈ Fin )
49 ssun2 { 0 } ⊆ ( ran 𝑘 ∪ { 0 } )
50 c0ex 0 ∈ V
51 50 snid 0 ∈ { 0 }
52 49 51 sselii 0 ∈ ( ran 𝑘 ∪ { 0 } )
53 ne0i ( 0 ∈ ( ran 𝑘 ∪ { 0 } ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ )
54 52 53 mp1i ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ )
55 ltso < Or ℝ
56 fisupcl ( ( < Or ℝ ∧ ( ( ran 𝑘 ∪ { 0 } ) ∈ Fin ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) )
57 55 56 mpan ( ( ( ran 𝑘 ∪ { 0 } ) ∈ Fin ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) )
58 48 54 40 57 syl3anc ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ( ran 𝑘 ∪ { 0 } ) )
59 40 58 sseldd ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ )
60 59 adantrr ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ )
61 metf ( 𝐷 ∈ ( Met ‘ 𝐵 ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ )
62 ffn ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ → 𝐷 Fn ( 𝐵 × 𝐵 ) )
63 26 61 62 3syl ( 𝜑𝐷 Fn ( 𝐵 × 𝐵 ) )
64 63 adantr ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝐷 Fn ( 𝐵 × 𝐵 ) )
65 26 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) )
66 simprl ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝑓𝐵 )
67 66 adantr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝑓𝐵 )
68 simprr ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝑔𝐵 )
69 68 adantr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝑔𝐵 )
70 metcl ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑓𝐵𝑔𝐵 ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ )
71 65 67 69 70 syl3anc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ )
72 metge0 ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑓𝐵𝑔𝐵 ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) )
73 65 67 69 72 syl3anc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 0 ≤ ( 𝑓 𝐷 𝑔 ) )
74 22 oveqdr ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) 𝑔 ) )
75 6 adantr ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝑆𝑊 )
76 7 adantr ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝐼 ∈ Fin )
77 fvexd ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ V )
78 77 ralrimiva ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ∀ 𝑥𝐼 ( 𝑅𝑥 ) ∈ V )
79 24 adantr ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
80 66 79 eleqtrd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝑓 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
81 68 79 eleqtrd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 𝑔 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
82 10 11 75 76 78 80 81 3 4 12 prdsdsval3 ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( 𝑓 ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) 𝑔 ) = sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) )
83 74 82 eqtrd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) )
84 83 adantr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) )
85 15 adantlr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑥𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
86 10 11 75 76 78 3 80 prdsbascl ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ∀ 𝑥𝐼 ( 𝑓𝑥 ) ∈ 𝑉 )
87 86 r19.21bi ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑥𝐼 ) → ( 𝑓𝑥 ) ∈ 𝑉 )
88 10 11 75 76 78 3 81 prdsbascl ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ∀ 𝑥𝐼 ( 𝑔𝑥 ) ∈ 𝑉 )
89 88 r19.21bi ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑥𝐼 ) → ( 𝑔𝑥 ) ∈ 𝑉 )
90 metcl ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ( 𝑓𝑥 ) ∈ 𝑉 ∧ ( 𝑔𝑥 ) ∈ 𝑉 ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ )
91 85 87 89 90 syl3anc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑥𝐼 ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ )
92 91 ad2ant2r ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ )
93 ffvelrn ( ( 𝑘 : 𝐼 ⟶ ℝ ∧ 𝑥𝐼 ) → ( 𝑘𝑥 ) ∈ ℝ )
94 93 ad2ant2lr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑘𝑥 ) ∈ ℝ )
95 59 adantlr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ )
96 95 adantr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ )
97 simprr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) )
98 87 ad2ant2r ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑓𝑥 ) ∈ 𝑉 )
99 89 ad2ant2r ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑔𝑥 ) ∈ 𝑉 )
100 97 98 99 fovrnd ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ( 0 [,] ( 𝑘𝑥 ) ) )
101 0re 0 ∈ ℝ
102 elicc2 ( ( 0 ∈ ℝ ∧ ( 𝑘𝑥 ) ∈ ℝ ) → ( ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ( 0 [,] ( 𝑘𝑥 ) ) ↔ ( ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∧ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ ( 𝑘𝑥 ) ) ) )
103 101 94 102 sylancr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ( 0 [,] ( 𝑘𝑥 ) ) ↔ ( ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∧ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ ( 𝑘𝑥 ) ) ) )
104 100 103 mpbid ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∧ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ ( 𝑘𝑥 ) ) )
105 104 simp3d ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ ( 𝑘𝑥 ) )
106 40 adantlr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ )
107 106 adantr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ )
108 52 53 mp1i ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ )
109 fimaxre2 ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ∈ Fin ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 )
110 40 48 109 syl2anc ( ( 𝜑𝑘 : 𝐼 ⟶ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 )
111 110 adantlr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 )
112 111 adantr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 )
113 ssun1 ran 𝑘 ⊆ ( ran 𝑘 ∪ { 0 } )
114 41 ad2antlr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝑘 Fn 𝐼 )
115 simprl ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝑥𝐼 )
116 fnfvelrn ( ( 𝑘 Fn 𝐼𝑥𝐼 ) → ( 𝑘𝑥 ) ∈ ran 𝑘 )
117 114 115 116 syl2anc ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑘𝑥 ) ∈ ran 𝑘 )
118 113 117 sseldi ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑘𝑥 ) ∈ ( ran 𝑘 ∪ { 0 } ) )
119 suprub ( ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 ) ∧ ( 𝑘𝑥 ) ∈ ( ran 𝑘 ∪ { 0 } ) ) → ( 𝑘𝑥 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
120 107 108 112 118 119 syl31anc ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑘𝑥 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
121 92 94 96 105 120 letrd ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ ( 𝑥𝐼𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
122 121 expr ( ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) ∧ 𝑥𝐼 ) → ( 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) → ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
123 122 ralimdva ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ 𝑘 : 𝐼 ⟶ ℝ ) → ( ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) → ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
124 123 impr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
125 ovex ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ V
126 125 rgenw 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ V
127 eqid ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) )
128 breq1 ( 𝑤 = ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) → ( 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
129 127 128 ralrnmptw ( ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
130 126 129 ax-mp ( ∀ 𝑤 ∈ ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑥𝐼 ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
131 124 130 sylibr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∀ 𝑤 ∈ ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
132 40 ad2ant2r ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ )
133 52 53 mp1i ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ran 𝑘 ∪ { 0 } ) ≠ ∅ )
134 110 ad2ant2r ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 )
135 52 a1i ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 0 ∈ ( ran 𝑘 ∪ { 0 } ) )
136 suprub ( ( ( ( ran 𝑘 ∪ { 0 } ) ⊆ ℝ ∧ ( ran 𝑘 ∪ { 0 } ) ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ ( ran 𝑘 ∪ { 0 } ) 𝑤𝑧 ) ∧ 0 ∈ ( ran 𝑘 ∪ { 0 } ) ) → 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
137 132 133 134 135 136 syl31anc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
138 elsni ( 𝑤 ∈ { 0 } → 𝑤 = 0 )
139 138 breq1d ( 𝑤 ∈ { 0 } → ( 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ 0 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
140 137 139 syl5ibrcom ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑤 ∈ { 0 } → 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
141 140 ralrimiv ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∀ 𝑤 ∈ { 0 } 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
142 ralunb ( ∀ 𝑤 ∈ ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ( ∀ 𝑤 ∈ ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∧ ∀ 𝑤 ∈ { 0 } 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
143 131 141 142 sylanbrc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∀ 𝑤 ∈ ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
144 91 fmpttd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) : 𝐼 ⟶ ℝ )
145 144 frnd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ⊆ ℝ )
146 0red ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → 0 ∈ ℝ )
147 146 snssd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → { 0 } ⊆ ℝ )
148 145 147 unssd ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ )
149 ressxr ℝ ⊆ ℝ*
150 148 149 sstrdi ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* )
151 150 adantr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* )
152 60 adantlr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ )
153 152 rexrd ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ* )
154 supxrleub ( ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ∧ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ* ) → ( sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑤 ∈ ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
155 151 153 154 syl2anc ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ↔ ∀ 𝑤 ∈ ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) 𝑤 ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
156 143 155 mpbird ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → sup ( ( ran ( 𝑥𝐼 ↦ ( ( 𝑓𝑥 ) 𝐸 ( 𝑔𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
157 84 156 eqbrtrd ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) )
158 elicc2 ( ( 0 ∈ ℝ ∧ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ) → ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ∧ ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) )
159 101 152 158 sylancr ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( ( 𝑓 𝐷 𝑔 ) ∈ ℝ ∧ 0 ≤ ( 𝑓 𝐷 𝑔 ) ∧ ( 𝑓 𝐷 𝑔 ) ≤ sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) )
160 71 73 157 159 mpbir3and ( ( ( 𝜑 ∧ ( 𝑓𝐵𝑔𝐵 ) ) ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
161 160 an32s ( ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) ∧ ( 𝑓𝐵𝑔𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
162 161 ralrimivva ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∀ 𝑓𝐵𝑔𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
163 ffnov ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑓𝐵𝑔𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) )
164 64 162 163 sylanbrc ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
165 oveq2 ( 𝑚 = sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) → ( 0 [,] 𝑚 ) = ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) )
166 165 feq3d ( 𝑚 = sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) → ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ↔ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) )
167 166 rspcev ( ( sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ∈ ℝ ∧ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] sup ( ( ran 𝑘 ∪ { 0 } ) , ℝ , < ) ) ) → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) )
168 60 164 167 syl2anc ( ( 𝜑 ∧ ( 𝑘 : 𝐼 ⟶ ℝ ∧ ∀ 𝑥𝐼 𝐸 : ( 𝑉 × 𝑉 ) ⟶ ( 0 [,] ( 𝑘𝑥 ) ) ) ) → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) )
169 34 168 exlimddv ( 𝜑 → ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) )
170 isbnd3 ( 𝐷 ∈ ( Bnd ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ ∃ 𝑚 ∈ ℝ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] 𝑚 ) ) )
171 26 169 170 sylanbrc ( 𝜑𝐷 ∈ ( Bnd ‘ 𝐵 ) )