Metamath Proof Explorer


Theorem prdsbnd2

Description: If balls are totally bounded in each factor, then balls are bounded in a metric product. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdsbnd.b 𝐵 = ( Base ‘ 𝑌 )
prdsbnd.v 𝑉 = ( Base ‘ ( 𝑅𝑥 ) )
prdsbnd.e 𝐸 = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) )
prdsbnd.d 𝐷 = ( dist ‘ 𝑌 )
prdsbnd.s ( 𝜑𝑆𝑊 )
prdsbnd.i ( 𝜑𝐼 ∈ Fin )
prdsbnd.r ( 𝜑𝑅 Fn 𝐼 )
prdsbnd2.c 𝐶 = ( 𝐷 ↾ ( 𝐴 × 𝐴 ) )
prdsbnd2.e ( ( 𝜑𝑥𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
prdsbnd2.m ( ( 𝜑𝑥𝐼 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) )
Assertion prdsbnd2 ( 𝜑 → ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ↔ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 prdsbnd.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdsbnd.b 𝐵 = ( Base ‘ 𝑌 )
3 prdsbnd.v 𝑉 = ( Base ‘ ( 𝑅𝑥 ) )
4 prdsbnd.e 𝐸 = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) )
5 prdsbnd.d 𝐷 = ( dist ‘ 𝑌 )
6 prdsbnd.s ( 𝜑𝑆𝑊 )
7 prdsbnd.i ( 𝜑𝐼 ∈ Fin )
8 prdsbnd.r ( 𝜑𝑅 Fn 𝐼 )
9 prdsbnd2.c 𝐶 = ( 𝐷 ↾ ( 𝐴 × 𝐴 ) )
10 prdsbnd2.e ( ( 𝜑𝑥𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
11 prdsbnd2.m ( ( 𝜑𝑥𝐼 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) )
12 totbndbnd ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) )
13 bndmet ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( Met ‘ 𝐴 ) )
14 0totbnd ( 𝐴 = ∅ → ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ↔ 𝐶 ∈ ( Met ‘ 𝐴 ) ) )
15 13 14 syl5ibr ( 𝐴 = ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) )
16 15 a1i ( 𝜑 → ( 𝐴 = ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) )
17 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎𝐴 )
18 simprr ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) )
19 eqid ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
20 eqid ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
21 eqid ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
22 fvexd ( ( 𝜑𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ V )
23 19 20 3 4 21 6 7 22 10 prdsmet ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ) )
24 dffn5 ( 𝑅 Fn 𝐼𝑅 = ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
25 8 24 sylib ( 𝜑𝑅 = ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
26 25 oveq2d ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
27 1 26 eqtrid ( 𝜑𝑌 = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
28 27 fveq2d ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
29 5 28 eqtrid ( 𝜑𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
30 27 fveq2d ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
31 2 30 eqtrid ( 𝜑𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
32 31 fveq2d ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) ) )
33 23 29 32 3eltr4d ( 𝜑𝐷 ∈ ( Met ‘ 𝐵 ) )
34 33 adantr ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) )
35 simpr ( ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) )
36 9 bnd2lem ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) → 𝐴𝐵 )
37 33 35 36 syl2an ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐴𝐵 )
38 simprl ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝑎𝐴 )
39 37 38 sseldd ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝑎𝐵 )
40 9 ssbnd ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑎𝐵 ) → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
41 34 39 40 syl2anc ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
42 18 41 mpbid ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) )
43 simprr ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) )
44 xpss12 ( ( 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝐴 × 𝐴 ) ⊆ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
45 43 43 44 syl2anc ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝐴 × 𝐴 ) ⊆ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
46 45 resabs1d ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) )
47 46 9 eqtr4di ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = 𝐶 )
48 simpll ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝜑 )
49 39 adantr ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎𝐵 )
50 simprl ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ )
51 38 adantr ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎𝐴 )
52 43 51 sseldd ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎 ∈ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) )
53 52 ne0d ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ )
54 33 ad2antrr ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) )
55 metxmet ( 𝐷 ∈ ( Met ‘ 𝐵 ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) )
56 54 55 syl ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) )
57 50 rexrd ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ* )
58 xbln0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑎𝐵𝑟 ∈ ℝ* ) → ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) )
59 56 49 57 58 syl3anc ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) )
60 53 59 mpbid ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 0 < 𝑟 )
61 50 60 elrpd ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ+ )
62 eqid ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) )
63 eqid ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) )
64 eqid ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) )
65 eqid ( ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) )
66 eqid ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) )
67 6 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑆𝑊 )
68 7 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin )
69 ovex ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V
70 fveq2 ( 𝑦 = 𝑥 → ( 𝑅𝑦 ) = ( 𝑅𝑥 ) )
71 2fveq3 ( 𝑦 = 𝑥 → ( dist ‘ ( 𝑅𝑦 ) ) = ( dist ‘ ( 𝑅𝑥 ) ) )
72 2fveq3 ( 𝑦 = 𝑥 → ( Base ‘ ( 𝑅𝑦 ) ) = ( Base ‘ ( 𝑅𝑥 ) ) )
73 72 3 eqtr4di ( 𝑦 = 𝑥 → ( Base ‘ ( 𝑅𝑦 ) ) = 𝑉 )
74 73 sqxpeqd ( 𝑦 = 𝑥 → ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) = ( 𝑉 × 𝑉 ) )
75 71 74 reseq12d ( 𝑦 = 𝑥 → ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) )
76 75 4 eqtr4di ( 𝑦 = 𝑥 → ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) = 𝐸 )
77 76 fveq2d ( 𝑦 = 𝑥 → ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) = ( ball ‘ 𝐸 ) )
78 fveq2 ( 𝑦 = 𝑥 → ( 𝑎𝑦 ) = ( 𝑎𝑥 ) )
79 eqidd ( 𝑦 = 𝑥𝑟 = 𝑟 )
80 77 78 79 oveq123d ( 𝑦 = 𝑥 → ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) )
81 70 80 oveq12d ( 𝑦 = 𝑥 → ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) = ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
82 81 cbvmptv ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) = ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
83 69 82 fnmpti ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) Fn 𝐼
84 83 a1i ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) Fn 𝐼 )
85 10 adantlr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) )
86 metxmet ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
87 85 86 syl ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) )
88 22 ralrimiva ( 𝜑 → ∀ 𝑥𝐼 ( 𝑅𝑥 ) ∈ V )
89 88 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ∀ 𝑥𝐼 ( 𝑅𝑥 ) ∈ V )
90 simprl ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑎𝐵 )
91 31 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
92 90 91 eleqtrd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑎 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) ) )
93 19 20 67 68 89 3 92 prdsbascl ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ∀ 𝑥𝐼 ( 𝑎𝑥 ) ∈ 𝑉 )
94 93 r19.21bi ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( 𝑎𝑥 ) ∈ 𝑉 )
95 simplrr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → 𝑟 ∈ ℝ+ )
96 95 rpred ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → 𝑟 ∈ ℝ )
97 blbnd ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎𝑥 ) ∈ 𝑉𝑟 ∈ ℝ ) → ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
98 87 94 96 97 syl3anc ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
99 ovex ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V
100 xpeq12 ( ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∧ 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ( 𝑦 × 𝑦 ) = ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
101 100 anidms ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝑦 × 𝑦 ) = ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
102 101 reseq2d ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) = ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
103 fveq2 ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( TotBnd ‘ 𝑦 ) = ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
104 102 103 eleq12d ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
105 fveq2 ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( Bnd ‘ 𝑦 ) = ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
106 102 105 eleq12d ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
107 104 106 bibi12d ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ↔ ( ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) )
108 107 imbi2d ( 𝑦 = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( ( 𝜑𝑥𝐼 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) ↔ ( ( 𝜑𝑥𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) )
109 99 108 11 vtocl ( ( 𝜑𝑥𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
110 109 adantlr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
111 98 110 mpbird ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
112 eqid ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) = ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) )
113 81 112 69 fvmpt ( 𝑥𝐼 → ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) = ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
114 113 adantl ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) = ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
115 114 fveq2d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( dist ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
116 eqid ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) = ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) )
117 eqid ( dist ‘ ( 𝑅𝑥 ) ) = ( dist ‘ ( 𝑅𝑥 ) )
118 116 117 ressds ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V → ( dist ‘ ( 𝑅𝑥 ) ) = ( dist ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
119 99 118 ax-mp ( dist ‘ ( 𝑅𝑥 ) ) = ( dist ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
120 115 119 eqtr4di ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( dist ‘ ( 𝑅𝑥 ) ) )
121 114 fveq2d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
122 rpxr ( 𝑟 ∈ ℝ+𝑟 ∈ ℝ* )
123 122 ad2antll ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ* )
124 123 adantr ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → 𝑟 ∈ ℝ* )
125 blssm ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎𝑥 ) ∈ 𝑉𝑟 ∈ ℝ* ) → ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 )
126 87 94 124 125 syl3anc ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 )
127 116 3 ressbas2 ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 → ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
128 126 127 syl ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
129 121 128 eqtr4d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) )
130 129 sqxpeqd ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) = ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
131 120 130 reseq12d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
132 4 reseq1i ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
133 xpss12 ( ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ∧ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ) → ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ⊆ ( 𝑉 × 𝑉 ) )
134 126 126 133 syl2anc ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ⊆ ( 𝑉 × 𝑉 ) )
135 134 resabs1d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
136 132 135 eqtrid ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( dist ‘ ( 𝑅𝑥 ) ) ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
137 131 136 eqtr4d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝐸 ↾ ( ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
138 129 fveq2d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( TotBnd ‘ ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) = ( TotBnd ‘ ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
139 111 137 138 3eltr4d ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( dist ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) ∈ ( TotBnd ‘ ( Base ‘ ( ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) )
140 62 63 64 65 66 67 68 84 139 prdstotbnd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ∈ ( TotBnd ‘ ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ) )
141 27 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑌 = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) ) )
142 eqidd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) )
143 eqid ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) )
144 82 oveq2i ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
145 144 fveq2i ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) )
146 fvexd ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( 𝑅𝑥 ) ∈ V )
147 99 a1i ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V )
148 141 142 143 5 145 67 67 68 146 147 ressprdsds ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝐷 ↾ ( ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) ) )
149 128 ixpeq2dva ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → X 𝑥𝐼 ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = X 𝑥𝐼 ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
150 70 cbvmptv ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) = ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) )
151 150 oveq2i ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( 𝑅𝑥 ) ) )
152 27 151 eqtr4di ( 𝜑𝑌 = ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) )
153 152 fveq2d ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
154 5 153 eqtrid ( 𝜑𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
155 154 fveq2d ( 𝜑 → ( ball ‘ 𝐷 ) = ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) ) )
156 155 oveqdr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑎 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) )
157 eqid ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) )
158 eqid ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) )
159 152 fveq2d ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
160 2 159 eqtrid ( 𝜑𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
161 160 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
162 90 161 eleqtrd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 𝑎 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) )
163 rpgt0 ( 𝑟 ∈ ℝ+ → 0 < 𝑟 )
164 163 ad2antll ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → 0 < 𝑟 )
165 151 157 3 4 158 67 68 146 87 162 123 164 prdsbl ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) = X 𝑥𝐼 ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) )
166 156 165 eqtrd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑥𝐼 ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) )
167 eqid ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
168 69 a1i ( ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) ∧ 𝑥𝐼 ) → ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V )
169 168 ralrimiva ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ∀ 𝑥𝐼 ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V )
170 eqid ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) )
171 167 143 67 68 169 170 prdsbas3 ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = X 𝑥𝐼 ( Base ‘ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) )
172 149 166 171 3eqtr4rd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) )
173 172 sqxpeqd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) = ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
174 173 reseq2d ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝐷 ↾ ( ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) ) = ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) )
175 148 174 eqtrd ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) )
176 144 fveq2i ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥𝐼 ↦ ( ( 𝑅𝑥 ) ↾s ( ( 𝑎𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) )
177 176 172 eqtrid ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) )
178 177 fveq2d ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( TotBnd ‘ ( Base ‘ ( 𝑆 Xs ( 𝑦𝐼 ↦ ( ( 𝑅𝑦 ) ↾s ( ( 𝑎𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅𝑦 ) ) × ( Base ‘ ( 𝑅𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ) = ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
179 140 175 178 3eltr3d ( ( 𝜑 ∧ ( 𝑎𝐵𝑟 ∈ ℝ+ ) ) → ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
180 48 49 61 179 syl12anc ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) )
181 totbndss ( ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( TotBnd ‘ 𝐴 ) )
182 180 43 181 syl2anc ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( TotBnd ‘ 𝐴 ) )
183 47 182 eqeltrrd ( ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) )
184 42 183 rexlimddv ( ( 𝜑 ∧ ( 𝑎𝐴𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) )
185 184 exp32 ( 𝜑 → ( 𝑎𝐴 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) )
186 185 exlimdv ( 𝜑 → ( ∃ 𝑎 𝑎𝐴 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) )
187 17 186 syl5bi ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) )
188 16 187 pm2.61dne ( 𝜑 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) )
189 12 188 impbid2 ( 𝜑 → ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ↔ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) )