Step |
Hyp |
Ref |
Expression |
1 |
|
prdsbnd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsbnd.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsbnd.v |
⊢ 𝑉 = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
4 |
|
prdsbnd.e |
⊢ 𝐸 = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) |
5 |
|
prdsbnd.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
6 |
|
prdsbnd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
7 |
|
prdsbnd.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
8 |
|
prdsbnd.r |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
9 |
|
prdsbnd2.c |
⊢ 𝐶 = ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) |
10 |
|
prdsbnd2.e |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
11 |
|
prdsbnd2.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) |
12 |
|
totbndbnd |
⊢ ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) |
13 |
|
bndmet |
⊢ ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( Met ‘ 𝐴 ) ) |
14 |
|
0totbnd |
⊢ ( 𝐴 = ∅ → ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ↔ 𝐶 ∈ ( Met ‘ 𝐴 ) ) ) |
15 |
13 14
|
syl5ibr |
⊢ ( 𝐴 = ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) ) |
17 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ 𝐴 ) |
18 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) |
19 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
21 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
22 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
23 |
19 20 3 4 21 6 7 22 10
|
prdsmet |
⊢ ( 𝜑 → ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ∈ ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
24 |
|
dffn5 |
⊢ ( 𝑅 Fn 𝐼 ↔ 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
25 |
8 24
|
sylib |
⊢ ( 𝜑 → 𝑅 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
26 |
25
|
oveq2d |
⊢ ( 𝜑 → ( 𝑆 Xs 𝑅 ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
27 |
1 26
|
syl5eq |
⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
28 |
27
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
29 |
5 28
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
30 |
27
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
31 |
2 30
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( Met ‘ 𝐵 ) = ( Met ‘ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) ) |
33 |
23 29 32
|
3eltr4d |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
35 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) → 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) |
36 |
9
|
bnd2lem |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) → 𝐴 ⊆ 𝐵 ) |
37 |
33 35 36
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐴 ⊆ 𝐵 ) |
38 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝑎 ∈ 𝐴 ) |
39 |
37 38
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝑎 ∈ 𝐵 ) |
40 |
9
|
ssbnd |
⊢ ( ( 𝐷 ∈ ( Met ‘ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
41 |
34 39 40
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) ↔ ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
42 |
18 41
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → ∃ 𝑟 ∈ ℝ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) |
43 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) |
44 |
|
xpss12 |
⊢ ( ( 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( 𝐴 × 𝐴 ) ⊆ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
45 |
43 43 44
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝐴 × 𝐴 ) ⊆ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
46 |
45
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = ( 𝐷 ↾ ( 𝐴 × 𝐴 ) ) ) |
47 |
46 9
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) = 𝐶 ) |
48 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝜑 ) |
49 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎 ∈ 𝐵 ) |
50 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ ) |
51 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎 ∈ 𝐴 ) |
52 |
43 51
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑎 ∈ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) |
53 |
52
|
ne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ) |
54 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |
55 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
56 |
54 55
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
57 |
50
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ* ) |
58 |
|
xbln0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) |
59 |
56 49 57 58
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ≠ ∅ ↔ 0 < 𝑟 ) ) |
60 |
53 59
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 0 < 𝑟 ) |
61 |
50 60
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝑟 ∈ ℝ+ ) |
62 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) |
63 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) |
64 |
|
eqid |
⊢ ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) |
65 |
|
eqid |
⊢ ( ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) |
66 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) |
67 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑆 ∈ 𝑊 ) |
68 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐼 ∈ Fin ) |
69 |
|
ovex |
⊢ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V |
70 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑥 ) ) |
71 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
72 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
73 |
72 3
|
eqtr4di |
⊢ ( 𝑦 = 𝑥 → ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = 𝑉 ) |
74 |
73
|
sqxpeqd |
⊢ ( 𝑦 = 𝑥 → ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑉 × 𝑉 ) ) |
75 |
71 74
|
reseq12d |
⊢ ( 𝑦 = 𝑥 → ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) ) |
76 |
75 4
|
eqtr4di |
⊢ ( 𝑦 = 𝑥 → ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) = 𝐸 ) |
77 |
76
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) = ( ball ‘ 𝐸 ) ) |
78 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑎 ‘ 𝑦 ) = ( 𝑎 ‘ 𝑥 ) ) |
79 |
|
eqidd |
⊢ ( 𝑦 = 𝑥 → 𝑟 = 𝑟 ) |
80 |
77 78 79
|
oveq123d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
81 |
70 80
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) = ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
82 |
81
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
83 |
69 82
|
fnmpti |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) Fn 𝐼 |
84 |
83
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) Fn 𝐼 ) |
85 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
86 |
|
metxmet |
⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
87 |
85 86
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
88 |
22
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑅 ‘ 𝑥 ) ∈ V ) |
89 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑅 ‘ 𝑥 ) ∈ V ) |
90 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑎 ∈ 𝐵 ) |
91 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
92 |
90 91
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑎 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) ) |
93 |
19 20 67 68 89 3 92
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑎 ‘ 𝑥 ) ∈ 𝑉 ) |
94 |
93
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑥 ) ∈ 𝑉 ) |
95 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑟 ∈ ℝ+ ) |
96 |
95
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑟 ∈ ℝ ) |
97 |
|
blbnd |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎 ‘ 𝑥 ) ∈ 𝑉 ∧ 𝑟 ∈ ℝ ) → ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
98 |
87 94 96 97
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
99 |
|
ovex |
⊢ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V |
100 |
|
xpeq12 |
⊢ ( ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∧ 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) → ( 𝑦 × 𝑦 ) = ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
101 |
100
|
anidms |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝑦 × 𝑦 ) = ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
102 |
101
|
reseq2d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) = ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
103 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( TotBnd ‘ 𝑦 ) = ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
104 |
102 103
|
eleq12d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
105 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( Bnd ‘ 𝑦 ) = ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
106 |
102 105
|
eleq12d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
107 |
104 106
|
bibi12d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ↔ ( ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) |
108 |
107
|
imbi2d |
⊢ ( 𝑦 = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( TotBnd ‘ 𝑦 ) ↔ ( 𝐸 ↾ ( 𝑦 × 𝑦 ) ) ∈ ( Bnd ‘ 𝑦 ) ) ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) |
109 |
99 108 11
|
vtocl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
110 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ↔ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( Bnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
111 |
98 110
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
112 |
|
eqid |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) |
113 |
81 112 69
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
114 |
113
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) = ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
115 |
114
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( dist ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
116 |
|
eqid |
⊢ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) = ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
117 |
|
eqid |
⊢ ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) |
118 |
116 117
|
ressds |
⊢ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V → ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) = ( dist ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
119 |
99 118
|
ax-mp |
⊢ ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) = ( dist ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
120 |
115 119
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
121 |
114
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
122 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
123 |
122
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ* ) |
124 |
123
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝑟 ∈ ℝ* ) |
125 |
|
blssm |
⊢ ( ( 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ∧ ( 𝑎 ‘ 𝑥 ) ∈ 𝑉 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ) |
126 |
87 94 124 125
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ) |
127 |
116 3
|
ressbas2 |
⊢ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 → ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
128 |
126 127
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
129 |
121 128
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) = ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
130 |
129
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) = ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
131 |
120 130
|
reseq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
132 |
4
|
reseq1i |
⊢ ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
133 |
|
xpss12 |
⊢ ( ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ∧ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ⊆ 𝑉 ) → ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ⊆ ( 𝑉 × 𝑉 ) ) |
134 |
126 126 133
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ⊆ ( 𝑉 × 𝑉 ) ) |
135 |
134
|
resabs1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( 𝑉 × 𝑉 ) ) ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
136 |
132 135
|
syl5eq |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
137 |
131 136
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) = ( 𝐸 ↾ ( ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) × ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
138 |
129
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( TotBnd ‘ ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) = ( TotBnd ‘ ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
139 |
111 137 138
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( dist ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ↾ ( ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) × ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) ∈ ( TotBnd ‘ ( Base ‘ ( ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ‘ 𝑥 ) ) ) ) |
140 |
62 63 64 65 66 67 68 84 139
|
prdstotbnd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ∈ ( TotBnd ‘ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ) ) |
141 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) ) |
142 |
|
eqidd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) |
143 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) |
144 |
82
|
oveq2i |
⊢ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
145 |
144
|
fveq2i |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) |
146 |
|
fvexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ V ) |
147 |
99
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ∈ V ) |
148 |
141 142 143 5 145 67 67 68 146 147
|
ressprdsds |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝐷 ↾ ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) ) ) |
149 |
128
|
ixpeq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → X 𝑥 ∈ 𝐼 ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
150 |
70
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) |
151 |
150
|
oveq2i |
⊢ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑥 ) ) ) |
152 |
27 151
|
eqtr4di |
⊢ ( 𝜑 → 𝑌 = ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
153 |
152
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ 𝑌 ) = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
154 |
5 153
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
155 |
154
|
fveq2d |
⊢ ( 𝜑 → ( ball ‘ 𝐷 ) = ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) ) |
156 |
155
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑎 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) |
157 |
|
eqid |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
158 |
|
eqid |
⊢ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) = ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) |
159 |
152
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
160 |
2 159
|
syl5eq |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝐵 = ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
162 |
90 161
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑎 ∈ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) |
163 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
164 |
163
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → 0 < 𝑟 ) |
165 |
151 157 3 4 158 67 68 146 87 162 123 164
|
prdsbl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
166 |
156 165
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) = X 𝑥 ∈ 𝐼 ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) |
167 |
|
eqid |
⊢ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
168 |
69
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V ) |
169 |
168
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ∈ V ) |
170 |
|
eqid |
⊢ ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) = ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) |
171 |
167 143 67 68 169 170
|
prdsbas3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) |
172 |
149 166 171
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) = ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) |
173 |
172
|
sqxpeqd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) = ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
174 |
173
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐷 ↾ ( ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) × ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) ) ) = ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
175 |
148 174
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( dist ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) |
176 |
144
|
fveq2i |
⊢ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( Base ‘ ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑥 ) ↾s ( ( 𝑎 ‘ 𝑥 ) ( ball ‘ 𝐸 ) 𝑟 ) ) ) ) ) |
177 |
176 172
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) = ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) |
178 |
177
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( TotBnd ‘ ( Base ‘ ( 𝑆 Xs ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑅 ‘ 𝑦 ) ↾s ( ( 𝑎 ‘ 𝑦 ) ( ball ‘ ( ( dist ‘ ( 𝑅 ‘ 𝑦 ) ) ↾ ( ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) × ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) ) 𝑟 ) ) ) ) ) ) = ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
179 |
140 175 178
|
3eltr3d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑟 ∈ ℝ+ ) ) → ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
180 |
48 49 61 179
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
181 |
|
totbndss |
⊢ ( ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ∈ ( TotBnd ‘ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( TotBnd ‘ 𝐴 ) ) |
182 |
180 43 181
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → ( ( 𝐷 ↾ ( ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) × ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ↾ ( 𝐴 × 𝐴 ) ) ∈ ( TotBnd ‘ 𝐴 ) ) |
183 |
47 182
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) ∧ ( 𝑟 ∈ ℝ ∧ 𝐴 ⊆ ( 𝑎 ( ball ‘ 𝐷 ) 𝑟 ) ) ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) |
184 |
42 183
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) |
185 |
184
|
exp32 |
⊢ ( 𝜑 → ( 𝑎 ∈ 𝐴 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) ) |
186 |
185
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ 𝐴 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) ) |
187 |
17 186
|
syl5bi |
⊢ ( 𝜑 → ( 𝐴 ≠ ∅ → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) ) |
188 |
16 187
|
pm2.61dne |
⊢ ( 𝜑 → ( 𝐶 ∈ ( Bnd ‘ 𝐴 ) → 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ) ) |
189 |
12 188
|
impbid2 |
⊢ ( 𝜑 → ( 𝐶 ∈ ( TotBnd ‘ 𝐴 ) ↔ 𝐶 ∈ ( Bnd ‘ 𝐴 ) ) ) |