Step |
Hyp |
Ref |
Expression |
1 |
|
prdscmnd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdscmnd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
prdscmnd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdscmnd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CMnd ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
7 |
|
cmnmnd |
⊢ ( 𝑎 ∈ CMnd → 𝑎 ∈ Mnd ) |
8 |
7
|
ssriv |
⊢ CMnd ⊆ Mnd |
9 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ CMnd ∧ CMnd ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
10 |
4 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
11 |
1 2 3 10
|
prdsmndd |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
12 |
4
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ CMnd ) |
13 |
12
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑐 ) ∈ CMnd ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
15 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
16 |
15
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑆 ∈ V ) |
18 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝐼 ∈ V ) |
21 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 Fn 𝐼 ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
24 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
25 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑐 ∈ 𝐼 ) |
26 |
1 14 17 20 23 24 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
27 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
28 |
1 14 17 20 23 27 25
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) |
29 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) |
30 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) |
31 |
29 30
|
cmncom |
⊢ ( ( ( 𝑅 ‘ 𝑐 ) ∈ CMnd ∧ ( 𝑎 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ∧ ( 𝑏 ‘ 𝑐 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
32 |
13 26 28 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) ∧ 𝑐 ∈ 𝐼 ) → ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) = ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) |
33 |
32
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
34 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
35 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → 𝑏 ∈ ( Base ‘ 𝑌 ) ) |
36 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
37 |
1 14 16 19 22 34 35 36
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) ) |
38 |
1 14 16 19 22 35 34 36
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) = ( 𝑐 ∈ 𝐼 ↦ ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) |
39 |
33 37 38
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ∧ 𝑏 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) = ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) ) |
40 |
5 6 11 39
|
iscmnd |
⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |