| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdscmnd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdscmnd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdscmnd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdscmnd.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ CMnd ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 7 |  | cmnmnd | ⊢ ( 𝑎  ∈  CMnd  →  𝑎  ∈  Mnd ) | 
						
							| 8 | 7 | ssriv | ⊢ CMnd  ⊆  Mnd | 
						
							| 9 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ CMnd  ∧  CMnd  ⊆  Mnd )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 10 | 4 8 9 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 11 | 1 2 3 10 | prdsmndd | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) | 
						
							| 12 | 4 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝑅 : 𝐼 ⟶ CMnd ) | 
						
							| 13 | 12 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑐 )  ∈  CMnd ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 15 | 3 | elexd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝑆  ∈  V ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝑆  ∈  V ) | 
						
							| 18 | 2 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝐼  ∈  V ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 21 | 4 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 24 |  | simpl2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝑐  ∈  𝐼 ) | 
						
							| 26 | 1 14 17 20 23 24 25 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  ( 𝑎 ‘ 𝑐 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) | 
						
							| 27 |  | simpl3 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 28 | 1 14 17 20 23 27 25 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑐 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑐 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) | 
						
							| 30 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑐 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) | 
						
							| 31 | 29 30 | cmncom | ⊢ ( ( ( 𝑅 ‘ 𝑐 )  ∈  CMnd  ∧  ( 𝑎 ‘ 𝑐 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑐 ) )  ∧  ( 𝑏 ‘ 𝑐 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑐 ) ) )  →  ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) )  =  ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 32 | 13 26 28 31 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑐  ∈  𝐼 )  →  ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) )  =  ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) | 
						
							| 33 | 32 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑐  ∈  𝐼  ↦  ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) )  =  ( 𝑐  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) | 
						
							| 34 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 35 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 36 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 37 | 1 14 16 19 22 34 35 36 | prdsplusgval | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  =  ( 𝑐  ∈  𝐼  ↦  ( ( 𝑎 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑏 ‘ 𝑐 ) ) ) ) | 
						
							| 38 | 1 14 16 19 22 35 34 36 | prdsplusgval | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 )  =  ( 𝑐  ∈  𝐼  ↦  ( ( 𝑏 ‘ 𝑐 ) ( +g ‘ ( 𝑅 ‘ 𝑐 ) ) ( 𝑎 ‘ 𝑐 ) ) ) ) | 
						
							| 39 | 33 37 38 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  =  ( 𝑏 ( +g ‘ 𝑌 ) 𝑎 ) ) | 
						
							| 40 | 5 6 11 39 | iscmnd | ⊢ ( 𝜑  →  𝑌  ∈  CMnd ) |