Step |
Hyp |
Ref |
Expression |
1 |
|
prdscrngd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdscrngd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
prdscrngd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdscrngd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ CRing ) |
5 |
|
crngring |
⊢ ( 𝑥 ∈ CRing → 𝑥 ∈ Ring ) |
6 |
5
|
ssriv |
⊢ CRing ⊆ Ring |
7 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ CRing ∧ CRing ⊆ Ring ) → 𝑅 : 𝐼 ⟶ Ring ) |
8 |
4 6 7
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Ring ) |
9 |
1 2 3 8
|
prdsringd |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
10 |
|
eqid |
⊢ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) |
11 |
|
fnmgp |
⊢ mulGrp Fn V |
12 |
|
ssv |
⊢ CRing ⊆ V |
13 |
|
fnssres |
⊢ ( ( mulGrp Fn V ∧ CRing ⊆ V ) → ( mulGrp ↾ CRing ) Fn CRing ) |
14 |
11 12 13
|
mp2an |
⊢ ( mulGrp ↾ CRing ) Fn CRing |
15 |
|
fvres |
⊢ ( 𝑥 ∈ CRing → ( ( mulGrp ↾ CRing ) ‘ 𝑥 ) = ( mulGrp ‘ 𝑥 ) ) |
16 |
|
eqid |
⊢ ( mulGrp ‘ 𝑥 ) = ( mulGrp ‘ 𝑥 ) |
17 |
16
|
crngmgp |
⊢ ( 𝑥 ∈ CRing → ( mulGrp ‘ 𝑥 ) ∈ CMnd ) |
18 |
15 17
|
eqeltrd |
⊢ ( 𝑥 ∈ CRing → ( ( mulGrp ↾ CRing ) ‘ 𝑥 ) ∈ CMnd ) |
19 |
18
|
rgen |
⊢ ∀ 𝑥 ∈ CRing ( ( mulGrp ↾ CRing ) ‘ 𝑥 ) ∈ CMnd |
20 |
|
ffnfv |
⊢ ( ( mulGrp ↾ CRing ) : CRing ⟶ CMnd ↔ ( ( mulGrp ↾ CRing ) Fn CRing ∧ ∀ 𝑥 ∈ CRing ( ( mulGrp ↾ CRing ) ‘ 𝑥 ) ∈ CMnd ) ) |
21 |
14 19 20
|
mpbir2an |
⊢ ( mulGrp ↾ CRing ) : CRing ⟶ CMnd |
22 |
|
fco2 |
⊢ ( ( ( mulGrp ↾ CRing ) : CRing ⟶ CMnd ∧ 𝑅 : 𝐼 ⟶ CRing ) → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ CMnd ) |
23 |
21 4 22
|
sylancr |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) : 𝐼 ⟶ CMnd ) |
24 |
10 2 3 23
|
prdscmnd |
⊢ ( 𝜑 → ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ CMnd ) |
25 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
26 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
27 |
4
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
28 |
1 26 10 2 3 27
|
prdsmgp |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) ) |
29 |
28
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
30 |
28
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) ) |
31 |
30
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ) 𝑦 ) ) |
32 |
25 29 31
|
cmnpropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) ∈ CMnd ↔ ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) ∈ CMnd ) ) |
33 |
24 32
|
mpbird |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑌 ) ∈ CMnd ) |
34 |
26
|
iscrng |
⊢ ( 𝑌 ∈ CRing ↔ ( 𝑌 ∈ Ring ∧ ( mulGrp ‘ 𝑌 ) ∈ CMnd ) ) |
35 |
9 33 34
|
sylanbrc |
⊢ ( 𝜑 → 𝑌 ∈ CRing ) |