| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbas.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdsbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 4 |  | prdsbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | prdsbas.i | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 6 |  | prdsds.l | ⊢ 𝐷  =  ( dist ‘ 𝑃 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 8 | 1 2 3 4 5 | prdsbas | ⊢ ( 𝜑  →  𝐵  =  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 10 | 1 2 3 4 5 9 | prdsplusg | ⊢ ( 𝜑  →  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 12 | 1 2 3 4 5 11 | prdsmulr | ⊢ ( 𝜑  →  ( .r ‘ 𝑃 )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 14 | 1 2 3 4 5 7 13 | prdsvsca | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑃 )  =  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 16 |  | eqidd | ⊢ ( 𝜑  →  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) )  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( le ‘ 𝑃 )  =  ( le ‘ 𝑃 ) | 
						
							| 18 | 1 2 3 4 5 17 | prdsle | ⊢ ( 𝜑  →  ( le ‘ 𝑃 )  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 20 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 21 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) )  =  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 22 | 1 7 5 8 10 12 14 15 16 18 19 20 21 2 3 | prdsval | ⊢ ( 𝜑  →  𝑃  =  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) | 
						
							| 23 |  | dsid | ⊢ dist  =  Slot  ( dist ‘ ndx ) | 
						
							| 24 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 25 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 26 | 25 | uniex | ⊢ ∪  ℝ*  ∈  V | 
						
							| 27 | 26 | pwex | ⊢ 𝒫  ∪  ℝ*  ∈  V | 
						
							| 28 |  | df-sup | ⊢ sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  =  ∪  { 𝑦  ∈  ℝ*  ∣  ( ∀ 𝑧  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ¬  𝑦  <  𝑧  ∧  ∀ 𝑧  ∈  ℝ* ( 𝑧  <  𝑦  →  ∃ 𝑤  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) 𝑧  <  𝑤 ) ) } | 
						
							| 29 |  | ssrab2 | ⊢ { 𝑦  ∈  ℝ*  ∣  ( ∀ 𝑧  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ¬  𝑦  <  𝑧  ∧  ∀ 𝑧  ∈  ℝ* ( 𝑧  <  𝑦  →  ∃ 𝑤  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) 𝑧  <  𝑤 ) ) }  ⊆  ℝ* | 
						
							| 30 | 29 | unissi | ⊢ ∪  { 𝑦  ∈  ℝ*  ∣  ( ∀ 𝑧  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ¬  𝑦  <  𝑧  ∧  ∀ 𝑧  ∈  ℝ* ( 𝑧  <  𝑦  →  ∃ 𝑤  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) 𝑧  <  𝑤 ) ) }  ⊆  ∪  ℝ* | 
						
							| 31 | 26 30 | elpwi2 | ⊢ ∪  { 𝑦  ∈  ℝ*  ∣  ( ∀ 𝑧  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ¬  𝑦  <  𝑧  ∧  ∀ 𝑧  ∈  ℝ* ( 𝑧  <  𝑦  →  ∃ 𝑤  ∈  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) 𝑧  <  𝑤 ) ) }  ∈  𝒫  ∪  ℝ* | 
						
							| 32 | 28 31 | eqeltri | ⊢ sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  𝒫  ∪  ℝ* | 
						
							| 33 | 32 | rgen2w | ⊢ ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  𝒫  ∪  ℝ* | 
						
							| 34 | 24 24 27 33 | mpoexw | ⊢ ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  ∈  V ) | 
						
							| 36 |  | snsstp3 | ⊢ { 〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ⊆  { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 } | 
						
							| 37 |  | ssun1 | ⊢ { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ⊆  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 38 | 36 37 | sstri | ⊢ { 〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ⊆  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 39 |  | ssun2 | ⊢ ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } )  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 40 | 38 39 | sstri | ⊢ { 〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 41 | 22 6 23 35 40 | prdsbaslem | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) |