| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsdsf.y | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 2 |  | prdsdsf.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsdsf.v | ⊢ 𝑉  =  ( Base ‘ 𝑅 ) | 
						
							| 4 |  | prdsdsf.e | ⊢ 𝐸  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) ) | 
						
							| 5 |  | prdsdsf.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 6 |  | prdsdsf.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 7 |  | prdsdsf.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑋 ) | 
						
							| 8 |  | prdsdsf.r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  𝑍 ) | 
						
							| 9 |  | prdsdsf.m | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 11 | 8 | elexd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  ∈  V ) | 
						
							| 12 | 11 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  V ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  V ) | 
						
							| 14 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑅 | 
						
							| 15 | 14 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V | 
						
							| 16 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝑅  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 17 | 16 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑅  ∈  V  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) ) | 
						
							| 18 | 15 17 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  V  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) ) | 
						
							| 19 | 13 18 | mpan9 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  𝑅 ) | 
						
							| 21 | 20 | fvmpts | ⊢ ( ( 𝑦  ∈  𝐼  ∧  ⦋ 𝑦  /  𝑥 ⦌ 𝑅  ∈  V )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 )  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 22 | 10 19 21 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 )  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) )  =  ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 24 | 23 | oveqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 25 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑆  ∈  𝑊 ) | 
						
							| 26 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝐼  ∈  𝑋 ) | 
						
							| 27 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑓  ∈  𝐵 ) | 
						
							| 28 | 1 2 25 26 13 3 27 | prdsbascl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 )  ∈  𝑉 ) | 
						
							| 29 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝑉 | 
						
							| 30 | 29 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑓 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 32 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝑉  =  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 33 | 31 32 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑓 ‘ 𝑥 )  ∈  𝑉  ↔  ( 𝑓 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 34 | 30 33 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 )  ∈  𝑉  →  ( 𝑓 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 35 | 28 34 | mpan9 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 36 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  𝑔  ∈  𝐵 ) | 
						
							| 37 | 1 2 25 26 13 3 36 | prdsbascl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 ( 𝑔 ‘ 𝑥 )  ∈  𝑉 ) | 
						
							| 38 | 29 | nfel2 | ⊢ Ⅎ 𝑥 ( 𝑔 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝑔 ‘ 𝑦 ) ) | 
						
							| 40 | 39 32 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑔 ‘ 𝑥 )  ∈  𝑉  ↔  ( 𝑔 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 41 | 38 40 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 ( 𝑔 ‘ 𝑥 )  ∈  𝑉  →  ( 𝑔 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 42 | 37 41 | mpan9 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑔 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 43 | 35 42 | ovresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 44 | 24 43 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) )  =  ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) ) ) | 
						
							| 45 | 9 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ∀ 𝑥  ∈  𝐼 𝐸  ∈  ( ∞Met ‘ 𝑉 ) ) | 
						
							| 47 |  | nfcv | ⊢ Ⅎ 𝑥 dist | 
						
							| 48 | 47 14 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) | 
						
							| 49 | 29 29 | nfxp | ⊢ Ⅎ 𝑥 ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 50 | 48 49 | nfres | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 51 |  | nfcv | ⊢ Ⅎ 𝑥 ∞Met | 
						
							| 52 | 51 29 | nffv | ⊢ Ⅎ 𝑥 ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 53 | 50 52 | nfel | ⊢ Ⅎ 𝑥 ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) )  ∈  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) | 
						
							| 54 | 16 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( dist ‘ 𝑅 )  =  ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 ) ) | 
						
							| 55 | 32 | sqxpeqd | ⊢ ( 𝑥  =  𝑦  →  ( 𝑉  ×  𝑉 )  =  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 56 | 54 55 | reseq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( dist ‘ 𝑅 )  ↾  ( 𝑉  ×  𝑉 ) )  =  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ) | 
						
							| 57 | 4 56 | eqtrid | ⊢ ( 𝑥  =  𝑦  →  𝐸  =  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ) | 
						
							| 58 | 32 | fveq2d | ⊢ ( 𝑥  =  𝑦  →  ( ∞Met ‘ 𝑉 )  =  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 59 | 57 58 | eleq12d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐸  ∈  ( ∞Met ‘ 𝑉 )  ↔  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) )  ∈  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ) | 
						
							| 60 | 53 59 | rspc | ⊢ ( 𝑦  ∈  𝐼  →  ( ∀ 𝑥  ∈  𝐼 𝐸  ∈  ( ∞Met ‘ 𝑉 )  →  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) )  ∈  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ) | 
						
							| 61 | 46 60 | mpan9 | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) )  ∈  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) | 
						
							| 62 |  | xmetcl | ⊢ ( ( ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) )  ∈  ( ∞Met ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑉 )  ∧  ( 𝑓 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ∧  ( 𝑔 ‘ 𝑦 )  ∈  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 )  →  ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) )  ∈  ℝ* ) | 
						
							| 63 | 61 35 42 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑦 ) ( ( dist ‘ ⦋ 𝑦  /  𝑥 ⦌ 𝑅 )  ↾  ( ⦋ 𝑦  /  𝑥 ⦌ 𝑉  ×  ⦋ 𝑦  /  𝑥 ⦌ 𝑉 ) ) ( 𝑔 ‘ 𝑦 ) )  ∈  ℝ* ) | 
						
							| 64 | 44 63 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) )  ∈  ℝ* ) | 
						
							| 65 | 64 | fmpttd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) ) : 𝐼 ⟶ ℝ* ) | 
						
							| 66 | 65 | frnd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ⊆  ℝ* ) | 
						
							| 67 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 68 | 67 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  0  ∈  ℝ* ) | 
						
							| 69 | 68 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  { 0 }  ⊆  ℝ* ) | 
						
							| 70 | 66 69 | unssd | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } )  ⊆  ℝ* ) | 
						
							| 71 |  | supxrcl | ⊢ ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } )  ⊆  ℝ*  →  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 72 | 70 71 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ℝ* ) | 
						
							| 73 |  | ssun2 | ⊢ { 0 }  ⊆  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) | 
						
							| 74 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 75 | 74 | snss | ⊢ ( 0  ∈  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } )  ↔  { 0 }  ⊆  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ) | 
						
							| 76 | 73 75 | mpbir | ⊢ 0  ∈  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) | 
						
							| 77 |  | supxrub | ⊢ ( ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } )  ⊆  ℝ*  ∧  0  ∈  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) )  →  0  ≤  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 78 | 70 76 77 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  0  ≤  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 79 |  | elxrge0 | ⊢ ( sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ℝ*  ∧  0  ≤  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 80 | 72 78 79 | sylanbrc | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 ) )  →  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 81 | 80 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 82 |  | eqid | ⊢ ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 83 | 82 | fmpo | ⊢ ( ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  ( 0 [,] +∞ )  ↔  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) : ( 𝐵  ×  𝐵 ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 84 | 81 83 | sylib | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) : ( 𝐵  ×  𝐵 ) ⟶ ( 0 [,] +∞ ) ) | 
						
							| 85 | 7 | mptexd | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  ∈  V ) | 
						
							| 86 | 8 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑍 ) | 
						
							| 87 |  | dmmptg | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑍  →  dom  ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  𝐼 ) | 
						
							| 88 | 86 87 | syl | ⊢ ( 𝜑  →  dom  ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  𝐼 ) | 
						
							| 89 | 1 6 85 2 88 5 | prdsds | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 90 | 89 | feq1d | ⊢ ( 𝜑  →  ( 𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ( 0 [,] +∞ )  ↔  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝑔 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) : ( 𝐵  ×  𝐵 ) ⟶ ( 0 [,] +∞ ) ) ) | 
						
							| 91 | 84 90 | mpbird | ⊢ ( 𝜑  →  𝐷 : ( 𝐵  ×  𝐵 ) ⟶ ( 0 [,] +∞ ) ) |