| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbas.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdsbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 4 |  | prdsbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | prdsbas.i | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 6 |  | prdsds.l | ⊢ 𝐷  =  ( dist ‘ 𝑃 ) | 
						
							| 7 |  | eqid | ⊢ ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 8 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 9 | 8 | supex | ⊢ sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 10 | 7 9 | fnmpoi | ⊢ ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  Fn  ( 𝐵  ×  𝐵 ) | 
						
							| 11 | 1 2 3 4 5 6 | prdsds | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 12 | 11 | fneq1d | ⊢ ( 𝜑  →  ( 𝐷  Fn  ( 𝐵  ×  𝐵 )  ↔  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) )  Fn  ( 𝐵  ×  𝐵 ) ) ) | 
						
							| 13 | 10 12 | mpbiri | ⊢ ( 𝜑  →  𝐷  Fn  ( 𝐵  ×  𝐵 ) ) |