| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbasmpt.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 6 |  | prdsplusgval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | prdsplusgval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | prdsdsval.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 9 |  | fnex | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑊 )  →  𝑅  ∈  V ) | 
						
							| 10 | 5 4 9 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 11 |  | fndm | ⊢ ( 𝑅  Fn  𝐼  →  dom  𝑅  =  𝐼 ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 13 | 1 3 10 2 12 8 | prdsds | ⊢ ( 𝜑  →  𝐷  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 14 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 15 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 16 | 14 15 | oveqan12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | mpteq2dv | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 19 | 18 | rneqd | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 19 | uneq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } )  =  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ) | 
						
							| 21 | 20 | supeq1d | ⊢ ( ( 𝜑  ∧  ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 ) )  →  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 22 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 23 | 22 | supex | ⊢ sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 24 | 23 | a1i | ⊢ ( 𝜑  →  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 25 | 13 21 6 7 24 | ovmpod | ⊢ ( 𝜑  →  ( 𝐹 𝐷 𝐺 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) |