| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt2.y | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 2 |  | prdsbasmpt2.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt2.r | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋 ) | 
						
							| 6 |  | prdsdsval2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | prdsdsval2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | prdsdsval2.e | ⊢ 𝐸  =  ( dist ‘ 𝑅 ) | 
						
							| 9 |  | prdsdsval2.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 10 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  𝑅 )  =  ( 𝑥  ∈  𝐼  ↦  𝑅 ) | 
						
							| 11 | 10 | fnmpt | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  Fn  𝐼 ) | 
						
							| 12 | 5 11 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  𝑅 )  Fn  𝐼 ) | 
						
							| 13 | 1 2 3 4 12 6 7 9 | prdsdsval | ⊢ ( 𝜑  →  ( 𝐹 𝐷 𝐺 )  =  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝐹 ‘ 𝑦 ) | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑥 dist | 
						
							| 16 |  | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) | 
						
							| 17 | 15 16 | nffv | ⊢ Ⅎ 𝑥 ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑥 ( 𝐺 ‘ 𝑦 ) | 
						
							| 19 | 14 17 18 | nfov | ⊢ Ⅎ 𝑥 ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 20 |  | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 21 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑥  →  ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) )  =  ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 24 | 21 22 23 | oveq123d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 25 | 19 20 24 | cbvmpt | ⊢ ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 26 |  | eqidd | ⊢ ( 𝜑  →  𝐼  =  𝐼 ) | 
						
							| 27 | 10 | fvmpt2 | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 )  =  𝑅 ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  ( dist ‘ 𝑅 ) ) | 
						
							| 29 | 28 8 | eqtr4di | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) )  =  𝐸 ) | 
						
							| 30 | 29 | oveqd | ⊢ ( ( 𝑥  ∈  𝐼  ∧  𝑅  ∈  𝑋 )  →  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 31 | 30 | ralimiaa | ⊢ ( ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋  →  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 32 | 5 31 | syl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 33 |  | mpteq12 | ⊢ ( ( 𝐼  =  𝐼  ∧  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 34 | 26 32 33 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 35 | 25 34 | eqtrid | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 35 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  =  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 36 | uneq1d | ⊢ ( 𝜑  →  ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  ∪  { 0 } )  =  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ) | 
						
							| 38 | 37 | supeq1d | ⊢ ( 𝜑  →  sup ( ( ran  ( 𝑦  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑦 ) ( dist ‘ ( ( 𝑥  ∈  𝐼  ↦  𝑅 ) ‘ 𝑦 ) ) ( 𝐺 ‘ 𝑦 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 39 | 13 38 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 𝐷 𝐺 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) |