| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt2.y | ⊢ 𝑌  =  ( 𝑆 Xs ( 𝑥  ∈  𝐼  ↦  𝑅 ) ) | 
						
							| 2 |  | prdsbasmpt2.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt2.r | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 𝑅  ∈  𝑋 ) | 
						
							| 6 |  | prdsdsval2.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | prdsdsval2.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | prdsdsval3.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | prdsdsval3.e | ⊢ 𝐸  =  ( ( dist ‘ 𝑅 )  ↾  ( 𝐾  ×  𝐾 ) ) | 
						
							| 10 |  | prdsdsval3.d | ⊢ 𝐷  =  ( dist ‘ 𝑌 ) | 
						
							| 11 |  | eqid | ⊢ ( dist ‘ 𝑅 )  =  ( dist ‘ 𝑅 ) | 
						
							| 12 | 1 2 3 4 5 6 7 11 10 | prdsdsval2 | ⊢ ( 𝜑  →  ( 𝐹 𝐷 𝐺 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  𝐼  =  𝐼 ) | 
						
							| 14 | 1 2 3 4 5 8 6 | prdsbascl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 )  ∈  𝐾 ) | 
						
							| 15 | 1 2 3 4 5 8 7 | prdsbascl | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( 𝐺 ‘ 𝑥 )  ∈  𝐾 ) | 
						
							| 16 | 9 | oveqi | ⊢ ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( ( dist ‘ 𝑅 )  ↾  ( 𝐾  ×  𝐾 ) ) ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 17 |  | ovres | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝐾  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑥 ) ( ( dist ‘ 𝑅 )  ↾  ( 𝐾  ×  𝐾 ) ) ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 18 | 16 17 | eqtrid | ⊢ ( ( ( 𝐹 ‘ 𝑥 )  ∈  𝐾  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝐹 ‘ 𝑥 )  ∈  𝐾  →  ( ( 𝐺 ‘ 𝑥 )  ∈  𝐾  →  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 19 | ral2imi | ⊢ ( ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 )  ∈  𝐾  →  ( ∀ 𝑥  ∈  𝐼 ( 𝐺 ‘ 𝑥 )  ∈  𝐾  →  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 14 15 20 | sylc | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 22 |  | mpteq12 | ⊢ ( ( 𝐼  =  𝐼  ∧  ∀ 𝑥  ∈  𝐼 ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 23 | 13 21 22 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 24 | 23 | rneqd | ⊢ ( 𝜑  →  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  =  ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 25 | 24 | uneq1d | ⊢ ( 𝜑  →  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } )  =  ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ) | 
						
							| 26 | 25 | supeq1d | ⊢ ( 𝜑  →  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) ( dist ‘ 𝑅 ) ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) | 
						
							| 27 | 12 26 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 𝐷 𝐺 )  =  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝐹 ‘ 𝑥 ) 𝐸 ( 𝐺 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) |