Step |
Hyp |
Ref |
Expression |
1 |
|
prdsgrpd.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsgrpd.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
3 |
|
prdsgrpd.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
4 |
|
prdsgrpd.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
5 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) ) |
6 |
|
eqidd |
⊢ ( 𝜑 → ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) ) |
7 |
|
grpmnd |
⊢ ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd ) |
8 |
7
|
ssriv |
⊢ Grp ⊆ Mnd |
9 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd ) |
10 |
4 8 9
|
sylancl |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
11 |
1 2 3 10
|
prds0g |
⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 0g ‘ 𝑌 ) ) |
12 |
1 2 3 10
|
prdsmndd |
⊢ ( 𝜑 → 𝑌 ∈ Mnd ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
15 |
3
|
elexd |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V ) |
17 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V ) |
19 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ Grp ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) ) |
21 |
|
eqid |
⊢ ( 0g ∘ 𝑅 ) = ( 0g ∘ 𝑅 ) |
22 |
|
eqid |
⊢ ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) = ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) |
23 |
1 13 14 16 18 19 20 21 22
|
prdsinvlem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) ) |
24 |
23
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
25 |
23
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑏 ) ) ‘ ( 𝑎 ‘ 𝑏 ) ) ) ( +g ‘ 𝑌 ) 𝑎 ) = ( 0g ∘ 𝑅 ) ) |
26 |
5 6 11 12 24 25
|
isgrpd2 |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |