Metamath Proof Explorer


Theorem prdsgrpd

Description: The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015)

Ref Expression
Hypotheses prdsgrpd.y 𝑌 = ( 𝑆 Xs 𝑅 )
prdsgrpd.i ( 𝜑𝐼𝑊 )
prdsgrpd.s ( 𝜑𝑆𝑉 )
prdsgrpd.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
Assertion prdsgrpd ( 𝜑𝑌 ∈ Grp )

Proof

Step Hyp Ref Expression
1 prdsgrpd.y 𝑌 = ( 𝑆 Xs 𝑅 )
2 prdsgrpd.i ( 𝜑𝐼𝑊 )
3 prdsgrpd.s ( 𝜑𝑆𝑉 )
4 prdsgrpd.r ( 𝜑𝑅 : 𝐼 ⟶ Grp )
5 eqidd ( 𝜑 → ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) )
6 eqidd ( 𝜑 → ( +g𝑌 ) = ( +g𝑌 ) )
7 grpmnd ( 𝑎 ∈ Grp → 𝑎 ∈ Mnd )
8 7 ssriv Grp ⊆ Mnd
9 fss ( ( 𝑅 : 𝐼 ⟶ Grp ∧ Grp ⊆ Mnd ) → 𝑅 : 𝐼 ⟶ Mnd )
10 4 8 9 sylancl ( 𝜑𝑅 : 𝐼 ⟶ Mnd )
11 1 2 3 10 prds0g ( 𝜑 → ( 0g𝑅 ) = ( 0g𝑌 ) )
12 1 2 3 10 prdsmndd ( 𝜑𝑌 ∈ Mnd )
13 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
14 eqid ( +g𝑌 ) = ( +g𝑌 )
15 3 elexd ( 𝜑𝑆 ∈ V )
16 15 adantr ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑆 ∈ V )
17 2 elexd ( 𝜑𝐼 ∈ V )
18 17 adantr ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝐼 ∈ V )
19 4 adantr ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑅 : 𝐼 ⟶ Grp )
20 simpr ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ 𝑌 ) )
21 eqid ( 0g𝑅 ) = ( 0g𝑅 )
22 eqid ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) ) = ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) )
23 1 13 14 16 18 19 20 21 22 prdsinvlem ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) ∧ ( ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) ) ( +g𝑌 ) 𝑎 ) = ( 0g𝑅 ) ) )
24 23 simpld ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) ) ∈ ( Base ‘ 𝑌 ) )
25 23 simprd ( ( 𝜑𝑎 ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑏𝐼 ↦ ( ( invg ‘ ( 𝑅𝑏 ) ) ‘ ( 𝑎𝑏 ) ) ) ( +g𝑌 ) 𝑎 ) = ( 0g𝑅 ) )
26 5 6 11 12 24 25 isgrpd2 ( 𝜑𝑌 ∈ Grp )