Step |
Hyp |
Ref |
Expression |
1 |
|
prdsgsum.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
2 |
|
prdsgsum.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
prdsgsum.z |
⊢ 0 = ( 0g ‘ 𝑌 ) |
4 |
|
prdsgsum.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
prdsgsum.j |
⊢ ( 𝜑 → 𝐽 ∈ 𝑊 ) |
6 |
|
prdsgsum.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑋 ) |
7 |
|
prdsgsum.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CMnd ) |
8 |
|
prdsgsum.f |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽 ) ) → 𝑈 ∈ 𝐵 ) |
9 |
|
prdsgsum.w |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
11 |
7
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ CMnd ) |
12 |
11
|
ffnd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) Fn 𝐼 ) |
13 |
1 4 6 11
|
prdscmnd |
⊢ ( 𝜑 → 𝑌 ∈ CMnd ) |
14 |
8
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → 𝑈 ∈ 𝐵 ) |
15 |
14
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝐼 ) → 𝑈 ∈ 𝐵 ) |
16 |
15
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) |
17 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ CMnd ) |
18 |
1 10 6 4 17 2
|
prdsbasmpt2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ↔ ∀ 𝑥 ∈ 𝐼 𝑈 ∈ 𝐵 ) ) |
20 |
16 19
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
21 |
20
|
fmpttd |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) : 𝐽 ⟶ ( Base ‘ 𝑌 ) ) |
22 |
10 3 13 5 21 9
|
gsumcl |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
23 |
1 10 6 4 12 22
|
prdsbasfn |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑌 |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 Σg |
26 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐽 |
27 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) |
28 |
26 27
|
nfmpt |
⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) |
29 |
24 25 28
|
nfov |
⊢ Ⅎ 𝑥 ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) |
30 |
29
|
dffn5f |
⊢ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) Fn 𝐼 ↔ ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
31 |
23 30
|
sylib |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) |
34 |
33
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑈 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
35 |
32 14 34
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) = 𝑈 ) |
36 |
35
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) = ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) |
38 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑌 ∈ CMnd ) |
39 |
|
cmnmnd |
⊢ ( 𝑅 ∈ CMnd → 𝑅 ∈ Mnd ) |
40 |
7 39
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Mnd ) |
41 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐽 ∈ 𝑊 ) |
42 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
43 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑋 ) |
44 |
40
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ Mnd ) |
45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) : 𝐼 ⟶ Mnd ) |
46 |
1 10 42 43 45 32
|
prdspjmhm |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑌 MndHom ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) ) |
47 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) |
48 |
47
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑅 ∈ CMnd ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
49 |
32 7 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) = 𝑅 ) |
50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 MndHom ( ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ‘ 𝑥 ) ) = ( 𝑌 MndHom 𝑅 ) ) |
51 |
46 50
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑎 ∈ ( Base ‘ 𝑌 ) ↦ ( 𝑎 ‘ 𝑥 ) ) ∈ ( 𝑌 MndHom 𝑅 ) ) |
52 |
20
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ∈ ( Base ‘ 𝑌 ) ) |
53 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) finSupp 0 ) |
54 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) |
55 |
|
fveq1 |
⊢ ( 𝑎 = ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) → ( 𝑎 ‘ 𝑥 ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
56 |
10 3 38 40 41 51 52 53 54 55
|
gsummhm2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ ( ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ‘ 𝑥 ) ) ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
57 |
37 56
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) = ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) |
58 |
57
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) ‘ 𝑥 ) ) ) |
59 |
31 58
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑌 Σg ( 𝑦 ∈ 𝐽 ↦ ( 𝑥 ∈ 𝐼 ↦ 𝑈 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑅 Σg ( 𝑦 ∈ 𝐽 ↦ 𝑈 ) ) ) ) |