| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbas.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdsbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 4 |  | prdsbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | prdsbas.i | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 6 |  | prdshom.h | ⊢ 𝐻  =  ( Hom  ‘ 𝑃 ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 8 | 1 2 3 4 5 | prdsbas | ⊢ ( 𝜑  →  𝐵  =  X 𝑥  ∈  𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 10 | 1 2 3 4 5 9 | prdsplusg | ⊢ ( 𝜑  →  ( +g ‘ 𝑃 )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 12 | 1 2 3 4 5 11 | prdsmulr | ⊢ ( 𝜑  →  ( .r ‘ 𝑃 )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 13 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑃 )  =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 14 | 1 2 3 4 5 7 13 | prdsvsca | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑃 )  =  ( 𝑓  ∈  ( Base ‘ 𝑆 ) ,  𝑔  ∈  𝐵  ↦  ( 𝑥  ∈  𝐼  ↦  ( 𝑓 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 16 |  | eqid | ⊢ ( TopSet ‘ 𝑃 )  =  ( TopSet ‘ 𝑃 ) | 
						
							| 17 | 1 2 3 4 5 16 | prdstset | ⊢ ( 𝜑  →  ( TopSet ‘ 𝑃 )  =  ( ∏t ‘ ( TopOpen  ∘  𝑅 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( le ‘ 𝑃 )  =  ( le ‘ 𝑃 ) | 
						
							| 19 | 1 2 3 4 5 18 | prdsle | ⊢ ( 𝜑  →  ( le ‘ 𝑃 )  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 20 |  | eqid | ⊢ ( dist ‘ 𝑃 )  =  ( dist ‘ 𝑃 ) | 
						
							| 21 | 1 2 3 4 5 20 | prdsds | ⊢ ( 𝜑  →  ( dist ‘ 𝑃 )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  sup ( ( ran  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( dist ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∪  { 0 } ) ,  ℝ* ,   <  ) ) ) | 
						
							| 22 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) | 
						
							| 23 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) )  =  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) ) | 
						
							| 24 | 1 7 5 8 10 12 14 15 17 19 21 22 23 2 3 | prdsval | ⊢ ( 𝜑  →  𝑃  =  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) ) | 
						
							| 25 |  | homid | ⊢ Hom   =  Slot  ( Hom  ‘ ndx ) | 
						
							| 26 |  | ovssunirn | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ∪  ran  ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 27 | 25 | strfvss | ⊢ ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ∪  ran  ( 𝑅 ‘ 𝑥 ) | 
						
							| 28 |  | fvssunirn | ⊢ ( 𝑅 ‘ 𝑥 )  ⊆  ∪  ran  𝑅 | 
						
							| 29 |  | rnss | ⊢ ( ( 𝑅 ‘ 𝑥 )  ⊆  ∪  ran  𝑅  →  ran  ( 𝑅 ‘ 𝑥 )  ⊆  ran  ∪  ran  𝑅 ) | 
						
							| 30 |  | uniss | ⊢ ( ran  ( 𝑅 ‘ 𝑥 )  ⊆  ran  ∪  ran  𝑅  →  ∪  ran  ( 𝑅 ‘ 𝑥 )  ⊆  ∪  ran  ∪  ran  𝑅 ) | 
						
							| 31 | 28 29 30 | mp2b | ⊢ ∪  ran  ( 𝑅 ‘ 𝑥 )  ⊆  ∪  ran  ∪  ran  𝑅 | 
						
							| 32 | 27 31 | sstri | ⊢ ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  𝑅 | 
						
							| 33 |  | rnss | ⊢ ( ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  𝑅  →  ran  ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ran  ∪  ran  ∪  ran  𝑅 ) | 
						
							| 34 |  | uniss | ⊢ ( ran  ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ran  ∪  ran  ∪  ran  𝑅  →  ∪  ran  ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  ∪  ran  𝑅 ) | 
						
							| 35 | 32 33 34 | mp2b | ⊢ ∪  ran  ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  ∪  ran  𝑅 | 
						
							| 36 | 26 35 | sstri | ⊢ ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  ∪  ran  𝑅 | 
						
							| 37 | 36 | rgenw | ⊢ ∀ 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  ∪  ran  𝑅 | 
						
							| 38 |  | ss2ixp | ⊢ ( ∀ 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ∪  ran  ∪  ran  ∪  ran  𝑅  →  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  X 𝑥  ∈  𝐼 ∪  ran  ∪  ran  ∪  ran  𝑅 ) | 
						
							| 39 | 37 38 | ax-mp | ⊢ X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  X 𝑥  ∈  𝐼 ∪  ran  ∪  ran  ∪  ran  𝑅 | 
						
							| 40 | 3 | dmexd | ⊢ ( 𝜑  →  dom  𝑅  ∈  V ) | 
						
							| 41 | 5 40 | eqeltrrd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 42 |  | rnexg | ⊢ ( 𝑅  ∈  𝑊  →  ran  𝑅  ∈  V ) | 
						
							| 43 |  | uniexg | ⊢ ( ran  𝑅  ∈  V  →  ∪  ran  𝑅  ∈  V ) | 
						
							| 44 | 3 42 43 | 3syl | ⊢ ( 𝜑  →  ∪  ran  𝑅  ∈  V ) | 
						
							| 45 |  | rnexg | ⊢ ( ∪  ran  𝑅  ∈  V  →  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 46 |  | uniexg | ⊢ ( ran  ∪  ran  𝑅  ∈  V  →  ∪  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 47 | 44 45 46 | 3syl | ⊢ ( 𝜑  →  ∪  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 48 |  | rnexg | ⊢ ( ∪  ran  ∪  ran  𝑅  ∈  V  →  ran  ∪  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 49 |  | uniexg | ⊢ ( ran  ∪  ran  ∪  ran  𝑅  ∈  V  →  ∪  ran  ∪  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 50 | 47 48 49 | 3syl | ⊢ ( 𝜑  →  ∪  ran  ∪  ran  ∪  ran  𝑅  ∈  V ) | 
						
							| 51 |  | ixpconstg | ⊢ ( ( 𝐼  ∈  V  ∧  ∪  ran  ∪  ran  ∪  ran  𝑅  ∈  V )  →  X 𝑥  ∈  𝐼 ∪  ran  ∪  ran  ∪  ran  𝑅  =  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 52 | 41 50 51 | syl2anc | ⊢ ( 𝜑  →  X 𝑥  ∈  𝐼 ∪  ran  ∪  ran  ∪  ran  𝑅  =  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 53 | 39 52 | sseqtrid | ⊢ ( 𝜑  →  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 54 |  | ovex | ⊢ ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ∈  V | 
						
							| 55 | 54 | elpw2 | ⊢ ( X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ∈  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ↔  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ⊆  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 56 | 53 55 | sylibr | ⊢ ( 𝜑  →  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ∈  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 57 | 56 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑔  ∈  𝐵 X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ∈  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 58 | 57 | ralrimivw | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ∈  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 59 |  | eqid | ⊢ ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 60 | 59 | fmpo | ⊢ ( ∀ 𝑓  ∈  𝐵 ∀ 𝑔  ∈  𝐵 X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ∈  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ↔  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵  ×  𝐵 ) ⟶ 𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 61 | 58 60 | sylib | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵  ×  𝐵 ) ⟶ 𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 ) ) | 
						
							| 62 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 63 | 62 62 | xpex | ⊢ ( 𝐵  ×  𝐵 )  ∈  V | 
						
							| 64 | 63 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  ∈  V ) | 
						
							| 65 | 54 | pwex | ⊢ 𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ∈  V | 
						
							| 66 | 65 | a1i | ⊢ ( 𝜑  →  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ∈  V ) | 
						
							| 67 |  | fex2 | ⊢ ( ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) : ( 𝐵  ×  𝐵 ) ⟶ 𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ∧  ( 𝐵  ×  𝐵 )  ∈  V  ∧  𝒫  ( ∪  ran  ∪  ran  ∪  ran  𝑅  ↑m  𝐼 )  ∈  V )  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 68 | 61 64 66 67 | syl3anc | ⊢ ( 𝜑  →  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) )  ∈  V ) | 
						
							| 69 |  | snsspr1 | ⊢ { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 }  ⊆  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } | 
						
							| 70 |  | ssun2 | ⊢ { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 }  ⊆  ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 71 | 69 70 | sstri | ⊢ { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 }  ⊆  ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) | 
						
							| 72 |  | ssun2 | ⊢ ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } )  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 73 | 71 72 | sstri | ⊢ { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 }  ⊆  ( ( { 〈 ( Base ‘ ndx ) ,  𝐵 〉 ,  〈 ( +g ‘ ndx ) ,  ( +g ‘ 𝑃 ) 〉 ,  〈 ( .r ‘ ndx ) ,  ( .r ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Scalar ‘ ndx ) ,  𝑆 〉 ,  〈 (  ·𝑠  ‘ ndx ) ,  (  ·𝑠  ‘ 𝑃 ) 〉 ,  〈 ( ·𝑖 ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  ( 𝑆  Σg  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) 〉 } )  ∪  ( { 〈 ( TopSet ‘ ndx ) ,  ( TopSet ‘ 𝑃 ) 〉 ,  〈 ( le ‘ ndx ) ,  ( le ‘ 𝑃 ) 〉 ,  〈 ( dist ‘ ndx ) ,  ( dist ‘ 𝑃 ) 〉 }  ∪  { 〈 ( Hom  ‘ ndx ) ,  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 〉 ,  〈 ( comp ‘ ndx ) ,  ( 𝑎  ∈  ( 𝐵  ×  𝐵 ) ,  𝑐  ∈  𝐵  ↦  ( 𝑑  ∈  ( ( 2nd  ‘ 𝑎 ) ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) 𝑐 ) ,  𝑒  ∈  ( ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ‘ 𝑎 )  ↦  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑑 ‘ 𝑥 ) ( 〈 ( ( 1st  ‘ 𝑎 ) ‘ 𝑥 ) ,  ( ( 2nd  ‘ 𝑎 ) ‘ 𝑥 ) 〉 ( comp ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑐 ‘ 𝑥 ) ) ( 𝑒 ‘ 𝑥 ) ) ) ) ) 〉 } ) ) | 
						
							| 74 | 24 6 25 68 73 | prdsbaslem | ⊢ ( 𝜑  →  𝐻  =  ( 𝑓  ∈  𝐵 ,  𝑔  ∈  𝐵  ↦  X 𝑥  ∈  𝐼 ( ( 𝑓 ‘ 𝑥 ) ( Hom  ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) |