| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsplusgcl.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsplusgcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsplusgcl.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 4 |  | prdsplusgcl.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 5 |  | prdsplusgcl.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | prdsplusgcl.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 7 |  | prdsidlem.z | ⊢  0   =  ( 0g  ∘  𝑅 ) | 
						
							| 8 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  V ) | 
						
							| 9 | 6 | feqmptd | ⊢ ( 𝜑  →  𝑅  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 10 |  | fn0g | ⊢ 0g  Fn  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  0g  Fn  V ) | 
						
							| 12 |  | dffn5 | ⊢ ( 0g  Fn  V  ↔  0g  =  ( 𝑥  ∈  V  ↦  ( 0g ‘ 𝑥 ) ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( 𝜑  →  0g  =  ( 𝑥  ∈  V  ↦  ( 0g ‘ 𝑥 ) ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑅 ‘ 𝑦 )  →  ( 0g ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 15 | 8 9 13 14 | fmptco | ⊢ ( 𝜑  →  ( 0g  ∘  𝑅 )  =  ( 𝑦  ∈  𝐼  ↦  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 16 | 7 15 | eqtrid | ⊢ ( 𝜑  →   0   =  ( 𝑦  ∈  𝐼  ↦  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 17 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  Mnd ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 20 | 18 19 | mndidcl | ⊢ ( ( 𝑅 ‘ 𝑦 )  ∈  Mnd  →  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 21 | 17 20 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 23 | 6 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 24 | 1 2 4 5 23 | prdsbasmpt | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐼  ↦  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∈  𝐵  ↔  ∀ 𝑦  ∈  𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 25 | 22 24 | mpbird | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐼  ↦  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∈  𝐵 ) | 
						
							| 26 | 16 25 | eqeltrd | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 27 | 7 | fveq1i | ⊢ (  0  ‘ 𝑦 )  =  ( ( 0g  ∘  𝑅 ) ‘ 𝑦 ) | 
						
							| 28 |  | fvco2 | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝑦  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑦 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 29 | 23 28 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑦 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 30 | 27 29 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  (  0  ‘ 𝑦 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  (  0  ‘ 𝑦 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( (  0  ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) )  =  ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) | 
						
							| 33 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 34 | 33 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  Mnd ) | 
						
							| 35 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  𝑉 ) | 
						
							| 36 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 37 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  𝑥  ∈  𝐵 ) | 
						
							| 39 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 40 | 1 2 35 36 37 38 39 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑥 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 41 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 42 | 18 41 19 | mndlid | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  Mnd  ∧  ( 𝑥 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  →  ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 43 | 34 40 42 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 44 | 32 43 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( (  0  ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 45 | 44 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  𝐼  ↦  ( (  0  ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑦 ) ) ) | 
						
							| 46 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑆  ∈  𝑉 ) | 
						
							| 47 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐼  ∈  𝑊 ) | 
						
							| 48 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑅  Fn  𝐼 ) | 
						
							| 49 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →   0   ∈  𝐵 ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  ∈  𝐵 ) | 
						
							| 51 | 1 2 46 47 48 49 50 3 | prdsplusgval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  0   +  𝑥 )  =  ( 𝑦  ∈  𝐼  ↦  ( (  0  ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) ) | 
						
							| 52 | 1 2 46 47 48 50 | prdsbasfn | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  Fn  𝐼 ) | 
						
							| 53 |  | dffn5 | ⊢ ( 𝑥  Fn  𝐼  ↔  𝑥  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑦 ) ) ) | 
						
							| 54 | 52 53 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑥  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑦 ) ) ) | 
						
							| 55 | 45 51 54 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  0   +  𝑥 )  =  𝑥 ) | 
						
							| 56 | 31 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) (  0  ‘ 𝑦 ) )  =  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 57 | 18 41 19 | mndrid | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  Mnd  ∧  ( 𝑥 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  →  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 58 | 34 40 57 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 59 | 56 58 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) (  0  ‘ 𝑦 ) )  =  ( 𝑥 ‘ 𝑦 ) ) | 
						
							| 60 | 59 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) (  0  ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑥 ‘ 𝑦 ) ) ) | 
						
							| 61 | 1 2 46 47 48 50 49 3 | prdsplusgval | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +   0  )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) (  0  ‘ 𝑦 ) ) ) ) | 
						
							| 62 | 60 61 54 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +   0  )  =  𝑥 ) | 
						
							| 63 | 55 62 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 64 | 63 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) | 
						
							| 65 | 26 64 | jca | ⊢ ( 𝜑  →  (  0   ∈  𝐵  ∧  ∀ 𝑥  ∈  𝐵 ( (  0   +  𝑥 )  =  𝑥  ∧  ( 𝑥  +   0  )  =  𝑥 ) ) ) |