| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsinvgd2.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsinvgd2.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdsinvgd2.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsinvgd2.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 5 |  | prdsinvgd2.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 6 |  | prdsinvgd2.n | ⊢ 𝑁  =  ( invg ‘ 𝑌 ) | 
						
							| 7 |  | prdsinvgd2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | prdsinvgd2.j | ⊢ ( 𝜑  →  𝐽  ∈  𝐼 ) | 
						
							| 9 | 1 2 3 4 5 6 7 | prdsinvgd | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝑋 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 ) ‘ 𝐽 )  =  ( ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 ) ) | 
						
							| 11 |  | 2fveq3 | ⊢ ( 𝑥  =  𝐽  →  ( invg ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑥  =  𝐽  →  ( 𝑋 ‘ 𝑥 )  =  ( 𝑋 ‘ 𝐽 ) ) | 
						
							| 13 | 11 12 | fveq12d | ⊢ ( 𝑥  =  𝐽  →  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) )  =  ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) | 
						
							| 14 |  | eqid | ⊢ ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) | 
						
							| 15 |  | fvex | ⊢ ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) )  ∈  V | 
						
							| 16 | 13 14 15 | fvmpt | ⊢ ( 𝐽  ∈  𝐼  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) | 
						
							| 17 | 8 16 | syl | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝑋 ‘ 𝑥 ) ) ) ‘ 𝐽 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) | 
						
							| 18 | 10 17 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝑋 ) ‘ 𝐽 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝐽 ) ) ‘ ( 𝑋 ‘ 𝐽 ) ) ) |