Step |
Hyp |
Ref |
Expression |
1 |
|
prdsinvlem.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsinvlem.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsinvlem.p |
⊢ + = ( +g ‘ 𝑌 ) |
4 |
|
prdsinvlem.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
5 |
|
prdsinvlem.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
6 |
|
prdsinvlem.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Grp ) |
7 |
|
prdsinvlem.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
8 |
|
prdsinvlem.z |
⊢ 0 = ( 0g ∘ 𝑅 ) |
9 |
|
prdsinvlem.n |
⊢ 𝑁 = ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
10 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Grp ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
12 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
13 |
6
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐹 ∈ 𝐵 ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
17 |
1 2 11 12 14 15 16
|
prdsbasprj |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
19 |
|
eqid |
⊢ ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) = ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) |
20 |
18 19
|
grpinvcl |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Grp ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
21 |
10 17 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
23 |
1 2 4 5 13
|
prdsbasmpt |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐼 ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
24 |
22 23
|
mpbird |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ∈ 𝐵 ) |
25 |
9 24
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ 𝐵 ) |
26 |
6
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑥 ) ∈ Grp ) |
27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
28 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
29 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ 𝐵 ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) |
32 |
1 2 27 28 29 30 31
|
prdsbasprj |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
33 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
34 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) |
35 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) |
36 |
|
eqid |
⊢ ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) = ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) |
37 |
33 34 35 36
|
grplinv |
⊢ ( ( ( 𝑅 ‘ 𝑥 ) ∈ Grp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) → ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
38 |
26 32 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
39 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) = ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
40 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
41 |
39 40
|
fveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) = ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
42 |
|
fvex |
⊢ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ V |
43 |
41 9 42
|
fvmpt |
⊢ ( 𝑥 ∈ 𝐼 → ( 𝑁 ‘ 𝑥 ) = ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑁 ‘ 𝑥 ) = ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
45 |
44
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) ) |
46 |
8
|
fveq1i |
⊢ ( 0 ‘ 𝑥 ) = ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) |
47 |
|
fvco2 |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
48 |
13 47
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
49 |
46 48
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 0 ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
50 |
38 45 49
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) = ( 0 ‘ 𝑥 ) ) |
51 |
50
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 0 ‘ 𝑥 ) ) ) |
52 |
1 2 4 5 13 25 7 3
|
prdsplusgval |
⊢ ( 𝜑 → ( 𝑁 + 𝐹 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
53 |
|
fn0g |
⊢ 0g Fn V |
54 |
|
ssv |
⊢ ran 𝑅 ⊆ V |
55 |
54
|
a1i |
⊢ ( 𝜑 → ran 𝑅 ⊆ V ) |
56 |
|
fnco |
⊢ ( ( 0g Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V ) → ( 0g ∘ 𝑅 ) Fn 𝐼 ) |
57 |
53 13 55 56
|
mp3an2i |
⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) Fn 𝐼 ) |
58 |
8
|
fneq1i |
⊢ ( 0 Fn 𝐼 ↔ ( 0g ∘ 𝑅 ) Fn 𝐼 ) |
59 |
57 58
|
sylibr |
⊢ ( 𝜑 → 0 Fn 𝐼 ) |
60 |
|
dffn5 |
⊢ ( 0 Fn 𝐼 ↔ 0 = ( 𝑥 ∈ 𝐼 ↦ ( 0 ‘ 𝑥 ) ) ) |
61 |
59 60
|
sylib |
⊢ ( 𝜑 → 0 = ( 𝑥 ∈ 𝐼 ↦ ( 0 ‘ 𝑥 ) ) ) |
62 |
51 52 61
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑁 + 𝐹 ) = 0 ) |
63 |
25 62
|
jca |
⊢ ( 𝜑 → ( 𝑁 ∈ 𝐵 ∧ ( 𝑁 + 𝐹 ) = 0 ) ) |