| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsinvlem.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsinvlem.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsinvlem.p | ⊢  +   =  ( +g ‘ 𝑌 ) | 
						
							| 4 |  | prdsinvlem.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 5 |  | prdsinvlem.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 6 |  | prdsinvlem.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 7 |  | prdsinvlem.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 8 |  | prdsinvlem.z | ⊢  0   =  ( 0g  ∘  𝑅 ) | 
						
							| 9 |  | prdsinvlem.n | ⊢ 𝑁  =  ( 𝑦  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 10 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  Grp ) | 
						
							| 11 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  𝑉 ) | 
						
							| 12 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 13 | 6 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 15 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝐹  ∈  𝐵 ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 17 | 1 2 11 12 14 15 16 | prdsbasprj | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 19 |  | eqid | ⊢ ( invg ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 20 | 18 19 | grpinvcl | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  Grp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 21 | 10 17 20 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐼 ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 23 | 1 2 4 5 13 | prdsbasmpt | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) )  ∈  𝐵  ↔  ∀ 𝑦  ∈  𝐼 ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 24 | 22 23 | mpbird | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐼  ↦  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) ) )  ∈  𝐵 ) | 
						
							| 25 | 9 24 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  𝐵 ) | 
						
							| 26 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑥 )  ∈  Grp ) | 
						
							| 27 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑆  ∈  𝑉 ) | 
						
							| 28 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐼  ∈  𝑊 ) | 
						
							| 29 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 30 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝐹  ∈  𝐵 ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  𝑥  ∈  𝐼 ) | 
						
							| 32 | 1 2 27 28 29 30 31 | prdsbasprj | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 34 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 35 |  | eqid | ⊢ ( 0g ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 36 |  | eqid | ⊢ ( invg ‘ ( 𝑅 ‘ 𝑥 ) )  =  ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) | 
						
							| 37 | 33 34 35 36 | grplinv | ⊢ ( ( ( 𝑅 ‘ 𝑥 )  ∈  Grp  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) )  →  ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 38 | 26 32 37 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 39 |  | 2fveq3 | ⊢ ( 𝑦  =  𝑥  →  ( invg ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 41 | 39 40 | fveq12d | ⊢ ( 𝑦  =  𝑥  →  ( ( invg ‘ ( 𝑅 ‘ 𝑦 ) ) ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 42 |  | fvex | ⊢ ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  V | 
						
							| 43 | 41 9 42 | fvmpt | ⊢ ( 𝑥  ∈  𝐼  →  ( 𝑁 ‘ 𝑥 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( 𝑁 ‘ 𝑥 )  =  ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 45 | 44 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) )  =  ( ( ( invg ‘ ( 𝑅 ‘ 𝑥 ) ) ‘ ( 𝐹 ‘ 𝑥 ) ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 46 | 8 | fveq1i | ⊢ (  0  ‘ 𝑥 )  =  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 ) | 
						
							| 47 |  | fvco2 | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝑥  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 48 | 13 47 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 0g  ∘  𝑅 ) ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 49 | 46 48 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  (  0  ‘ 𝑥 )  =  ( 0g ‘ ( 𝑅 ‘ 𝑥 ) ) ) | 
						
							| 50 | 38 45 49 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐼 )  →  ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) )  =  (  0  ‘ 𝑥 ) ) | 
						
							| 51 | 50 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  𝐼  ↦  (  0  ‘ 𝑥 ) ) ) | 
						
							| 52 | 1 2 4 5 13 25 7 3 | prdsplusgval | ⊢ ( 𝜑  →  ( 𝑁  +  𝐹 )  =  ( 𝑥  ∈  𝐼  ↦  ( ( 𝑁 ‘ 𝑥 ) ( +g ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 53 |  | fn0g | ⊢ 0g  Fn  V | 
						
							| 54 |  | ssv | ⊢ ran  𝑅  ⊆  V | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  ran  𝑅  ⊆  V ) | 
						
							| 56 |  | fnco | ⊢ ( ( 0g  Fn  V  ∧  𝑅  Fn  𝐼  ∧  ran  𝑅  ⊆  V )  →  ( 0g  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 57 | 53 13 55 56 | mp3an2i | ⊢ ( 𝜑  →  ( 0g  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 58 | 8 | fneq1i | ⊢ (  0   Fn  𝐼  ↔  ( 0g  ∘  𝑅 )  Fn  𝐼 ) | 
						
							| 59 | 57 58 | sylibr | ⊢ ( 𝜑  →   0   Fn  𝐼 ) | 
						
							| 60 |  | dffn5 | ⊢ (  0   Fn  𝐼  ↔   0   =  ( 𝑥  ∈  𝐼  ↦  (  0  ‘ 𝑥 ) ) ) | 
						
							| 61 | 59 60 | sylib | ⊢ ( 𝜑  →   0   =  ( 𝑥  ∈  𝐼  ↦  (  0  ‘ 𝑥 ) ) ) | 
						
							| 62 | 51 52 61 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝑁  +  𝐹 )  =   0  ) | 
						
							| 63 | 25 62 | jca | ⊢ ( 𝜑  →  ( 𝑁  ∈  𝐵  ∧  ( 𝑁  +  𝐹 )  =   0  ) ) |