| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbas.p | ⊢ 𝑃  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbas.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 3 |  | prdsbas.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑊 ) | 
						
							| 4 |  | prdsbas.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | prdsbas.i | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 6 |  | prdsle.l | ⊢  ≤   =  ( le ‘ 𝑃 ) | 
						
							| 7 | 1 2 3 4 5 6 | prdsle | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 8 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 9 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 10 | 8 9 | prss | ⊢ ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ↔  { 𝑓 ,  𝑔 }  ⊆  𝐵 ) | 
						
							| 11 | 10 | anbi1i | ⊢ ( ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ↔  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 12 | 11 | opabbii | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } | 
						
							| 13 |  | opabssxp | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  ⊆  ( 𝐵  ×  𝐵 ) | 
						
							| 14 | 12 13 | eqsstrri | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  ⊆  ( 𝐵  ×  𝐵 ) | 
						
							| 15 | 7 14 | eqsstrdi | ⊢ ( 𝜑  →   ≤   ⊆  ( 𝐵  ×  𝐵 ) ) |