| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsbasmpt.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsbasmpt.b | ⊢ 𝐵  =  ( Base ‘ 𝑌 ) | 
						
							| 3 |  | prdsbasmpt.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsbasmpt.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 5 |  | prdsbasmpt.r | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 6 |  | prdsplusgval.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 7 |  | prdsplusgval.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 8 |  | prdsleval.l | ⊢  ≤   =  ( le ‘ 𝑌 ) | 
						
							| 9 |  | df-br | ⊢ ( 𝐹  ≤  𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈   ≤  ) | 
						
							| 10 |  | fnex | ⊢ ( ( 𝑅  Fn  𝐼  ∧  𝐼  ∈  𝑊 )  →  𝑅  ∈  V ) | 
						
							| 11 | 5 4 10 | syl2anc | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 12 | 5 | fndmd | ⊢ ( 𝜑  →  dom  𝑅  =  𝐼 ) | 
						
							| 13 | 1 3 11 2 12 8 | prdsle | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 14 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 15 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 16 | 14 15 | prss | ⊢ ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ↔  { 𝑓 ,  𝑔 }  ⊆  𝐵 ) | 
						
							| 17 | 16 | anbi1i | ⊢ ( ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) )  ↔  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) | 
						
							| 18 | 17 | opabbii | ⊢ { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  =  { 〈 𝑓 ,  𝑔 〉  ∣  ( { 𝑓 ,  𝑔 }  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } | 
						
							| 19 | 13 18 | eqtr4di | ⊢ ( 𝜑  →   ≤   =  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉  ∈   ≤   ↔  〈 𝐹 ,  𝐺 〉  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) ) | 
						
							| 21 | 9 20 | bitrid | ⊢ ( 𝜑  →  ( 𝐹  ≤  𝐺  ↔  〈 𝐹 ,  𝐺 〉  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) } ) ) | 
						
							| 22 |  | fveq1 | ⊢ ( 𝑓  =  𝐹  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 23 |  | fveq1 | ⊢ ( 𝑔  =  𝐺  →  ( 𝑔 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 24 | 22 23 | breqan12d | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 )  ↔  ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( ( 𝑓  =  𝐹  ∧  𝑔  =  𝐺 )  →  ( ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 | opelopab2a | ⊢ ( ( 𝐹  ∈  𝐵  ∧  𝐺  ∈  𝐵 )  →  ( 〈 𝐹 ,  𝐺 〉  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  ↔  ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 27 | 6 7 26 | syl2anc | ⊢ ( 𝜑  →  ( 〈 𝐹 ,  𝐺 〉  ∈  { 〈 𝑓 ,  𝑔 〉  ∣  ( ( 𝑓  ∈  𝐵  ∧  𝑔  ∈  𝐵 )  ∧  ∀ 𝑥  ∈  𝐼 ( 𝑓 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) }  ↔  ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 28 | 21 27 | bitrd | ⊢ ( 𝜑  →  ( 𝐹  ≤  𝐺  ↔  ∀ 𝑥  ∈  𝐼 ( 𝐹 ‘ 𝑥 ) ( le ‘ ( 𝑅 ‘ 𝑥 ) ) ( 𝐺 ‘ 𝑥 ) ) ) |