| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdslmodd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdslmodd.s | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 3 |  | prdslmodd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 4 |  | prdslmodd.rm | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 5 |  | prdslmodd.rs | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) )  =  𝑆 ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 7 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 8 | 4 3 | fexd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 9 | 1 2 8 | prdssca | ⊢ ( 𝜑  →  𝑆  =  ( Scalar ‘ 𝑌 ) ) | 
						
							| 10 |  | eqidd | ⊢ ( 𝜑  →  (  ·𝑠  ‘ 𝑌 )  =  (  ·𝑠  ‘ 𝑌 ) ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝜑  →  ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 14 |  | eqidd | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 15 |  | lmodgrp | ⊢ ( 𝑎  ∈  LMod  →  𝑎  ∈  Grp ) | 
						
							| 16 | 15 | ssriv | ⊢ LMod  ⊆  Grp | 
						
							| 17 |  | fss | ⊢ ( ( 𝑅 : 𝐼 ⟶ LMod  ∧  LMod  ⊆  Grp )  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 18 | 4 16 17 | sylancl | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Grp ) | 
						
							| 19 | 1 3 2 18 | prdsgrpd | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 21 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑌 )  =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 23 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 24 | 3 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 27 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 28 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 29 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) )  =  𝑆 ) | 
						
							| 30 | 1 20 21 22 23 25 26 27 28 29 | prdsvscacl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 31 | 30 | 3impb | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 32 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  LMod ) | 
						
							| 33 | 32 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  LMod ) | 
						
							| 34 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 35 | 5 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 36 | 35 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 37 | 34 36 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 38 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  Ring ) | 
						
							| 39 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 40 | 4 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 42 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 44 | 1 20 38 39 41 42 43 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 45 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 46 | 1 20 38 39 41 45 43 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 48 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 49 |  | eqid | ⊢ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 50 |  | eqid | ⊢ (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) )  =  (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 51 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 52 | 47 48 49 50 51 | lmodvsdi | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  LMod  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  ∧  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 53 | 33 37 44 46 52 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 54 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 55 | 1 20 38 39 41 42 45 54 43 | prdsplusgfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 )  =  ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 56 | 55 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 57 | 1 20 21 22 38 39 41 34 42 43 | prdsvscafval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 58 | 1 20 21 22 38 39 41 34 45 43 | prdsvscafval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 59 | 57 58 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 60 | 53 56 59 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 61 | 60 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 62 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 63 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 64 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 65 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 66 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑌  ∈  Grp ) | 
						
							| 67 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 68 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 69 | 20 54 | grpcl | ⊢ ( ( 𝑌  ∈  Grp  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 70 | 66 67 68 69 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 71 | 1 20 21 22 62 63 64 65 70 | prdsvscaval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 72 | 30 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 73 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 74 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 75 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 76 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 77 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 78 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) )  =  𝑆 ) | 
						
							| 79 | 1 20 21 22 73 74 75 76 77 78 | prdsvscacl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 80 | 79 | 3adantr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 81 | 1 20 62 63 64 72 80 54 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 82 | 61 71 81 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) )  =  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ) ) | 
						
							| 83 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  Ring ) | 
						
							| 84 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 85 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 86 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 87 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 88 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 89 | 1 20 21 22 83 84 85 86 87 88 | prdsvscafval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 90 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 91 | 1 20 21 22 83 84 85 90 87 88 | prdsvscafval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 )  =  ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 92 | 89 91 | oveq12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 93 | 32 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  LMod ) | 
						
							| 94 | 35 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 95 | 86 94 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 96 | 90 94 | eleqtrrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) | 
						
							| 97 | 1 20 83 84 85 87 88 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 98 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 99 | 47 48 49 50 51 98 | lmodvsdir | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  LMod  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∧  𝑏  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∧  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) )  →  ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 100 | 93 95 96 97 99 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 101 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) )  =  𝑆 ) | 
						
							| 102 | 101 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( +g ‘ 𝑆 ) ) | 
						
							| 103 | 102 | oveqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 )  =  ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) | 
						
							| 104 | 103 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( +g ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 105 | 92 100 104 | 3eqtr2rd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 106 | 105 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 107 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 108 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 109 | 40 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 110 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 111 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 112 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 113 | 22 112 | ringacl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 114 | 107 110 111 113 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 115 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 116 | 1 20 21 22 107 108 109 114 115 | prdsvscaval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ 𝑌 ) 𝑐 )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 117 | 79 | 3adantr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 118 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ LMod ) | 
						
							| 119 | 1 20 21 22 107 108 118 111 115 101 | prdsvscacl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 120 | 1 20 107 108 109 117 119 54 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 121 | 106 116 120 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ 𝑌 ) 𝑐 )  =  ( ( 𝑎 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ( +g ‘ 𝑌 ) ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ) ) | 
						
							| 122 | 91 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 123 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 124 | 47 49 50 51 123 | lmodvsass | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  LMod  ∧  ( 𝑎  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∧  𝑏  ∈  ( Base ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  ∧  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) )  →  ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 125 | 93 95 96 97 124 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 126 | 101 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( .r ‘ 𝑆 ) ) | 
						
							| 127 | 126 | oveqd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 )  =  ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) ) | 
						
							| 128 | 127 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( .r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 129 | 122 125 128 | 3eqtr2rd | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 130 | 129 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 131 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 132 | 22 131 | ringcl | ⊢ ( ( 𝑆  ∈  Ring  ∧  𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 133 | 107 110 111 132 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 134 | 1 20 21 22 107 108 109 133 115 | prdsvscaval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ 𝑌 ) 𝑐 )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 135 | 1 20 21 22 107 108 109 110 119 | prdsvscaval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 136 | 130 134 135 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑆 )  ∧  𝑏  ∈  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( .r ‘ 𝑆 ) 𝑏 ) (  ·𝑠  ‘ 𝑌 ) 𝑐 )  =  ( 𝑎 (  ·𝑠  ‘ 𝑌 ) ( 𝑏 (  ·𝑠  ‘ 𝑌 ) 𝑐 ) ) ) | 
						
							| 137 | 5 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 138 | 137 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 139 | 138 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) )  =  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) | 
						
							| 140 | 32 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  LMod ) | 
						
							| 141 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  Ring ) | 
						
							| 142 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 143 | 40 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 144 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 145 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 146 | 1 20 141 142 143 144 145 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 147 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) )  =  ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 148 | 47 49 50 147 | lmodvs1 | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  LMod  ∧  ( 𝑎 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) )  =  ( 𝑎 ‘ 𝑦 ) ) | 
						
							| 149 | 140 146 148 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 1r ‘ ( Scalar ‘ ( 𝑅 ‘ 𝑦 ) ) ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) )  =  ( 𝑎 ‘ 𝑦 ) ) | 
						
							| 150 | 139 149 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) )  =  ( 𝑎 ‘ 𝑦 ) ) | 
						
							| 151 | 150 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 ‘ 𝑦 ) ) ) | 
						
							| 152 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝑆  ∈  Ring ) | 
						
							| 153 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝐼  ∈  V ) | 
						
							| 154 | 40 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 155 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 156 | 22 155 | ringidcl | ⊢ ( 𝑆  ∈  Ring  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 157 | 2 156 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 158 | 157 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( 1r ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 159 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 160 | 1 20 21 22 152 153 154 158 159 | prdsvscaval | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ 𝑌 ) 𝑎 )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑦 ) ) ) ) | 
						
							| 161 | 1 20 152 153 154 159 | prdsbasfn | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝑎  Fn  𝐼 ) | 
						
							| 162 |  | dffn5 | ⊢ ( 𝑎  Fn  𝐼  ↔  𝑎  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 ‘ 𝑦 ) ) ) | 
						
							| 163 | 161 162 | sylib | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  𝑎  =  ( 𝑦  ∈  𝐼  ↦  ( 𝑎 ‘ 𝑦 ) ) ) | 
						
							| 164 | 151 160 163 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 1r ‘ 𝑆 ) (  ·𝑠  ‘ 𝑌 ) 𝑎 )  =  𝑎 ) | 
						
							| 165 | 6 7 9 10 11 12 13 14 2 19 31 82 121 136 164 | islmodd | ⊢ ( 𝜑  →  𝑌  ∈  LMod ) |