Step |
Hyp |
Ref |
Expression |
1 |
|
prdsmet.y |
⊢ 𝑌 = ( 𝑆 Xs ( 𝑥 ∈ 𝐼 ↦ 𝑅 ) ) |
2 |
|
prdsmet.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
3 |
|
prdsmet.v |
⊢ 𝑉 = ( Base ‘ 𝑅 ) |
4 |
|
prdsmet.e |
⊢ 𝐸 = ( ( dist ‘ 𝑅 ) ↾ ( 𝑉 × 𝑉 ) ) |
5 |
|
prdsmet.d |
⊢ 𝐷 = ( dist ‘ 𝑌 ) |
6 |
|
prdsmet.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
7 |
|
prdsmet.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
8 |
|
prdsmet.r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ 𝑍 ) |
9 |
|
prdsmet.m |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( Met ‘ 𝑉 ) ) |
10 |
|
metxmet |
⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐸 ∈ ( ∞Met ‘ 𝑉 ) ) |
12 |
1 2 3 4 5 6 7 8 11
|
prdsxmet |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ) |
13 |
1 2 3 4 5 6 7 8 11
|
prdsdsf |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ( 0 [,] +∞ ) ) |
14 |
13
|
ffnd |
⊢ ( 𝜑 → 𝐷 Fn ( 𝐵 × 𝐵 ) ) |
15 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑆 ∈ 𝑊 ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝐼 ∈ Fin ) |
17 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 𝑅 ∈ 𝑍 ) |
19 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑓 ∈ 𝐵 ) |
20 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 𝑔 ∈ 𝐵 ) |
21 |
1 2 15 16 18 19 20 3 4 5
|
prdsdsval3 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) = sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ) |
22 |
1 2 15 16 18 3 19
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ) |
23 |
1 2 15 16 18 3 20
|
prdsbascl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) |
24 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ↔ ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) ) |
25 |
|
metcl |
⊢ ( ( 𝐸 ∈ ( Met ‘ 𝑉 ) ∧ ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
26 |
25
|
3expib |
⊢ ( 𝐸 ∈ ( Met ‘ 𝑉 ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
27 |
9 26
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
28 |
27
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
30 |
24 29
|
syl5bir |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ( ∀ 𝑥 ∈ 𝐼 ( 𝑓 ‘ 𝑥 ) ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑔 ‘ 𝑥 ) ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) ) |
31 |
22 23 30
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ) |
32 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) |
33 |
32
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝐼 ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ∈ ℝ ↔ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ ) |
34 |
31 33
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) : 𝐼 ⟶ ℝ ) |
35 |
34
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ⊆ ℝ ) |
36 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → 0 ∈ ℝ ) |
37 |
36
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → { 0 } ⊆ ℝ ) |
38 |
35 37
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ ) |
39 |
|
xrltso |
⊢ < Or ℝ* |
40 |
39
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → < Or ℝ* ) |
41 |
|
mptfi |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) |
42 |
|
rnfi |
⊢ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) |
43 |
16 41 42
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ) |
44 |
|
snfi |
⊢ { 0 } ∈ Fin |
45 |
|
unfi |
⊢ ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∈ Fin ∧ { 0 } ∈ Fin ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ) |
46 |
43 44 45
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ) |
47 |
|
ssun2 |
⊢ { 0 } ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
48 |
|
c0ex |
⊢ 0 ∈ V |
49 |
48
|
snss |
⊢ ( 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ↔ { 0 } ⊆ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
50 |
47 49
|
mpbir |
⊢ 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) |
51 |
|
ne0i |
⊢ ( 0 ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ) |
52 |
50 51
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ) |
53 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
54 |
38 53
|
sstrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) |
55 |
|
fisupcl |
⊢ ( ( < Or ℝ* ∧ ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ∈ Fin ∧ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ≠ ∅ ∧ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ⊆ ℝ* ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
56 |
40 46 52 54 55
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) ) |
57 |
38 56
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → sup ( ( ran ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) 𝐸 ( 𝑔 ‘ 𝑥 ) ) ) ∪ { 0 } ) , ℝ* , < ) ∈ ℝ ) |
58 |
21 57
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
59 |
58
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) |
60 |
|
ffnov |
⊢ ( 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ↔ ( 𝐷 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑓 ∈ 𝐵 ∀ 𝑔 ∈ 𝐵 ( 𝑓 𝐷 𝑔 ) ∈ ℝ ) ) |
61 |
14 59 60
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) |
62 |
|
ismet2 |
⊢ ( 𝐷 ∈ ( Met ‘ 𝐵 ) ↔ ( 𝐷 ∈ ( ∞Met ‘ 𝐵 ) ∧ 𝐷 : ( 𝐵 × 𝐵 ) ⟶ ℝ ) ) |
63 |
12 61 62
|
sylanbrc |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝐵 ) ) |