Step |
Hyp |
Ref |
Expression |
1 |
|
prdsmgp.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
prdsmgp.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑌 ) |
3 |
|
prdsmgp.z |
⊢ 𝑍 = ( 𝑆 Xs ( mulGrp ∘ 𝑅 ) ) |
4 |
|
prdsmgp.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
5 |
|
prdsmgp.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑊 ) |
6 |
|
prdsmgp.r |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
7 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) |
8 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) |
9 |
7 8
|
mgpbas |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
10 |
|
fvco2 |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
11 |
6 10
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
12 |
11
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) = ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) |
13 |
12
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑥 ) ) ) = ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
14 |
9 13
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
15 |
14
|
ixpeq2dva |
⊢ ( 𝜑 → X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
17 |
2 16
|
mgpbas |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑀 ) |
18 |
17
|
eqcomi |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑌 ) |
19 |
1 18 5 4 6
|
prdsbas2 |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( 𝑅 ‘ 𝑥 ) ) ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
21 |
|
fnmgp |
⊢ mulGrp Fn V |
22 |
|
ssv |
⊢ ran 𝑅 ⊆ V |
23 |
22
|
a1i |
⊢ ( 𝜑 → ran 𝑅 ⊆ V ) |
24 |
|
fnco |
⊢ ( ( mulGrp Fn V ∧ 𝑅 Fn 𝐼 ∧ ran 𝑅 ⊆ V ) → ( mulGrp ∘ 𝑅 ) Fn 𝐼 ) |
25 |
21 6 23 24
|
mp3an2i |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) Fn 𝐼 ) |
26 |
3 20 5 4 25
|
prdsbas2 |
⊢ ( 𝜑 → ( Base ‘ 𝑍 ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑥 ) ) ) |
27 |
15 19 26
|
3eqtr4d |
⊢ ( 𝜑 → ( Base ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ) |
28 |
|
eqid |
⊢ ( .r ‘ 𝑌 ) = ( .r ‘ 𝑌 ) |
29 |
2 28
|
mgpplusg |
⊢ ( .r ‘ 𝑌 ) = ( +g ‘ 𝑀 ) |
30 |
|
eqid |
⊢ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) |
31 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) |
32 |
30 31
|
mgpplusg |
⊢ ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( +g ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) |
33 |
|
fvco2 |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑧 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) |
34 |
6 33
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) = ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) = ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( +g ‘ ( mulGrp ‘ ( 𝑅 ‘ 𝑧 ) ) ) = ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ) |
37 |
32 36
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) = ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ) |
38 |
37
|
oveqd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) = ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) |
39 |
38
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) |
40 |
27 27 39
|
mpoeq123dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) , 𝑦 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
41 |
|
fnex |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → 𝑅 ∈ V ) |
42 |
6 4 41
|
syl2anc |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
43 |
6
|
fndmd |
⊢ ( 𝜑 → dom 𝑅 = 𝐼 ) |
44 |
1 5 42 18 43 28
|
prdsmulr |
⊢ ( 𝜑 → ( .r ‘ 𝑌 ) = ( 𝑥 ∈ ( Base ‘ 𝑀 ) , 𝑦 ∈ ( Base ‘ 𝑀 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ ( 𝑅 ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
45 |
|
fnex |
⊢ ( ( ( mulGrp ∘ 𝑅 ) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ) → ( mulGrp ∘ 𝑅 ) ∈ V ) |
46 |
25 4 45
|
syl2anc |
⊢ ( 𝜑 → ( mulGrp ∘ 𝑅 ) ∈ V ) |
47 |
25
|
fndmd |
⊢ ( 𝜑 → dom ( mulGrp ∘ 𝑅 ) = 𝐼 ) |
48 |
|
eqid |
⊢ ( +g ‘ 𝑍 ) = ( +g ‘ 𝑍 ) |
49 |
3 5 46 20 47 48
|
prdsplusg |
⊢ ( 𝜑 → ( +g ‘ 𝑍 ) = ( 𝑥 ∈ ( Base ‘ 𝑍 ) , 𝑦 ∈ ( Base ‘ 𝑍 ) ↦ ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) ( +g ‘ ( ( mulGrp ∘ 𝑅 ) ‘ 𝑧 ) ) ( 𝑦 ‘ 𝑧 ) ) ) ) ) |
50 |
40 44 49
|
3eqtr4d |
⊢ ( 𝜑 → ( .r ‘ 𝑌 ) = ( +g ‘ 𝑍 ) ) |
51 |
29 50
|
eqtr3id |
⊢ ( 𝜑 → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) |
52 |
27 51
|
jca |
⊢ ( 𝜑 → ( ( Base ‘ 𝑀 ) = ( Base ‘ 𝑍 ) ∧ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑍 ) ) ) |