| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prdsmndd.y | ⊢ 𝑌  =  ( 𝑆 Xs 𝑅 ) | 
						
							| 2 |  | prdsmndd.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑊 ) | 
						
							| 3 |  | prdsmndd.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑉 ) | 
						
							| 4 |  | prdsmndd.r | ⊢ ( 𝜑  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 5 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) ) | 
						
							| 6 |  | eqidd | ⊢ ( 𝜑  →  ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 8 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 9 | 3 | elexd | ⊢ ( 𝜑  →  𝑆  ∈  V ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  V ) | 
						
							| 11 | 2 | elexd | ⊢ ( 𝜑  →  𝐼  ∈  V ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 14 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 15 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 16 | 1 7 8 10 12 13 14 15 | prdsplusgcl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 17 | 16 | 3impb | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 18 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  Mnd ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑅 ‘ 𝑦 )  ∈  Mnd ) | 
						
							| 20 | 9 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑆  ∈  V ) | 
						
							| 21 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 22 | 4 | ffnd | ⊢ ( 𝜑  →  𝑅  Fn  𝐼 ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑅  Fn  𝐼 ) | 
						
							| 24 |  | simplr1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑦  ∈  𝐼 ) | 
						
							| 26 | 1 7 20 21 23 24 25 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑎 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 27 |  | simplr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 28 | 1 7 20 21 23 27 25 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑏 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 29 |  | simplr3 | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 30 | 1 7 20 21 23 29 25 | prdsbasprj | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) | 
						
							| 31 |  | eqid | ⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 32 |  | eqid | ⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) )  =  ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) | 
						
							| 33 | 31 32 | mndass | ⊢ ( ( ( 𝑅 ‘ 𝑦 )  ∈  Mnd  ∧  ( ( 𝑎 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  ∧  ( 𝑏 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) )  ∧  ( 𝑐 ‘ 𝑦 )  ∈  ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) )  →  ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 34 | 19 26 28 30 33 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 1 7 20 21 23 24 27 8 25 | prdsplusgfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 )  =  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ) | 
						
							| 36 | 35 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑏 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 37 | 1 7 20 21 23 27 29 8 25 | prdsplusgfval | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 )  =  ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) )  =  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 39 | 34 36 38 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) )  =  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) | 
						
							| 40 | 39 | mpteq2dva | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 41 | 9 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑆  ∈  V ) | 
						
							| 42 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝐼  ∈  V ) | 
						
							| 43 | 22 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅  Fn  𝐼 ) | 
						
							| 44 | 16 | 3adantr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 45 |  | simpr3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑐  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 46 | 1 7 41 42 43 44 45 8 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 )  =  ( 𝑦  ∈  𝐼  ↦  ( ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑐 ‘ 𝑦 ) ) ) ) | 
						
							| 47 |  | simpr1 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑎  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑅 : 𝐼 ⟶ Mnd ) | 
						
							| 49 |  | simpr2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  𝑏  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 50 | 1 7 8 41 42 48 49 45 | prdsplusgcl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 51 | 1 7 41 42 43 47 50 8 | prdsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑎 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ‘ 𝑦 ) ) ) ) | 
						
							| 52 | 40 46 51 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  ( Base ‘ 𝑌 )  ∧  𝑏  ∈  ( Base ‘ 𝑌 )  ∧  𝑐  ∈  ( Base ‘ 𝑌 ) ) )  →  ( ( 𝑎 ( +g ‘ 𝑌 ) 𝑏 ) ( +g ‘ 𝑌 ) 𝑐 )  =  ( 𝑎 ( +g ‘ 𝑌 ) ( 𝑏 ( +g ‘ 𝑌 ) 𝑐 ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( 0g  ∘  𝑅 )  =  ( 0g  ∘  𝑅 ) | 
						
							| 54 | 1 7 8 9 11 4 53 | prdsidlem | ⊢ ( 𝜑  →  ( ( 0g  ∘  𝑅 )  ∈  ( Base ‘ 𝑌 )  ∧  ∀ 𝑎  ∈  ( Base ‘ 𝑌 ) ( ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑎 ) ) ) | 
						
							| 55 | 54 | simpld | ⊢ ( 𝜑  →  ( 0g  ∘  𝑅 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 56 | 54 | simprd | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  ( Base ‘ 𝑌 ) ( ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑎 ) ) | 
						
							| 57 | 56 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑎 )  =  𝑎  ∧  ( 𝑎 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑎 ) ) | 
						
							| 58 | 57 | simpld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 0g  ∘  𝑅 ) ( +g ‘ 𝑌 ) 𝑎 )  =  𝑎 ) | 
						
							| 59 | 57 | simprd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑎 ( +g ‘ 𝑌 ) ( 0g  ∘  𝑅 ) )  =  𝑎 ) | 
						
							| 60 | 5 6 17 52 55 58 59 | ismndd | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) |