Step |
Hyp |
Ref |
Expression |
1 |
|
prdsxms.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
2 |
|
msxms |
⊢ ( 𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp ) |
3 |
2
|
ssriv |
⊢ MetSp ⊆ ∞MetSp |
4 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ MetSp ∧ MetSp ⊆ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝑅 : 𝐼 ⟶ MetSp → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
6 |
1
|
prdsxms |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |
7 |
5 6
|
syl3an3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ ∞MetSp ) |
8 |
|
simp1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑆 ∈ 𝑊 ) |
9 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝐼 ∈ Fin ) |
10 |
|
eqid |
⊢ ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
12 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑅 : 𝐼 ⟶ MetSp ) |
13 |
1 8 9 10 11 12
|
prdsmslem1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
14 |
|
ssid |
⊢ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) |
15 |
|
metres2 |
⊢ ( ( ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
16 |
13 14 15
|
sylancl |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
17 |
|
eqid |
⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) |
18 |
|
eqid |
⊢ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
19 |
17 11 18
|
isms |
⊢ ( 𝑌 ∈ MetSp ↔ ( 𝑌 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) ) |
20 |
7 16 19
|
sylanbrc |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp ) |