| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsxms.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
msxms |
⊢ ( 𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp ) |
| 3 |
2
|
ssriv |
⊢ MetSp ⊆ ∞MetSp |
| 4 |
|
fss |
⊢ ( ( 𝑅 : 𝐼 ⟶ MetSp ∧ MetSp ⊆ ∞MetSp ) → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 5 |
3 4
|
mpan2 |
⊢ ( 𝑅 : 𝐼 ⟶ MetSp → 𝑅 : 𝐼 ⟶ ∞MetSp ) |
| 6 |
1
|
prdsxms |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ ∞MetSp ) → 𝑌 ∈ ∞MetSp ) |
| 7 |
5 6
|
syl3an3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ ∞MetSp ) |
| 8 |
|
simp1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑆 ∈ 𝑊 ) |
| 9 |
|
simp2 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝐼 ∈ Fin ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝑌 ) = ( dist ‘ 𝑌 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 12 |
|
simp3 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑅 : 𝐼 ⟶ MetSp ) |
| 13 |
1 8 9 10 11 12
|
prdsmslem1 |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 14 |
|
ssid |
⊢ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) |
| 15 |
|
metres2 |
⊢ ( ( ( dist ‘ 𝑌 ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ∧ ( Base ‘ 𝑌 ) ⊆ ( Base ‘ 𝑌 ) ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) |
| 17 |
|
eqid |
⊢ ( TopOpen ‘ 𝑌 ) = ( TopOpen ‘ 𝑌 ) |
| 18 |
|
eqid |
⊢ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) = ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) |
| 19 |
17 11 18
|
isms |
⊢ ( 𝑌 ∈ MetSp ↔ ( 𝑌 ∈ ∞MetSp ∧ ( ( dist ‘ 𝑌 ) ↾ ( ( Base ‘ 𝑌 ) × ( Base ‘ 𝑌 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝑌 ) ) ) ) |
| 20 |
7 16 19
|
sylanbrc |
⊢ ( ( 𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅 : 𝐼 ⟶ MetSp ) → 𝑌 ∈ MetSp ) |